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1.

1.1

Introduction
]

Some words of the translator ...

1.2

Overview

This translation was made by a person who never wishes to be made responsible for
it. The epitaph is:

Mos xaTa ¢ Kpaio
f HUYEBO HE 3HAI0

(Lots of thank to this unknown person from the author of OCHEM for the nice trans-
lation which could never be achieved by the OCHEM programmer!)

This package is intended to support the typesetting of organic structural formulae
and reaction schemes with BIgX. The aim of this package is to provide a TgX-like
mechanism for positioning individual formulae within a scheme by giving a sim-
ple description of the geometry of the formulae. In short, this package provides a
“chemistry compiler” which should do all the painstaking work for you. During a
first KTIEX run, the chemical descriptions are written into an auxiliary text file. This file
is then compiled and produces TgX fragments containing the formulae, which then
in turn will be read during a second BIgX run. Thus, the graphic fragments automati-
cally replace the descriptions in the output BKTIEX document. Depending on the cho-
sen output format (LaTeX, PSLATeX and PS), the compiler produces text fragments
consisting of pure BTEX, BTEX with embedded PostScript code or pure PostScript.

Changing the chemistry material’s description requires all the steps depicted above.
If changes do not influence the chemistry descriptions, the compiled graphic frag-
ments can easily be reused.

The main focus of this package and its compiler lies on planar representations of sim-
ple text formulae, line drawings as well as simple and common three-dimensional
stereo formulae like chair conformations of cyclohexane or bridges in polycyclic
compounds like morphinee. A geometric description of very complicated struc-
tures, e. g. polycyclic alkaloids, can cause problems. Beside the common bond an-
gles and lengths, all others have to be calculated individually, and extensive use of
saveXY and restoreXY is necessary. Quite unfortunately, OCHEM is not a molec-
ular modelling tool (sniff). The author welcomes any suggestions or comments for
this package; especially if it is felt that some basic elements for a proper and easy
description of structural elements are missing.

Chemists who need to show the reaction mechanisms may use small arrows to il-
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2 Chapter 1 — Introduction

lustrate the movement of electrons. In order to draw such arrows, it becomes clear
that there are as many commands which have to be typed in a text editor as there
are countless mouse movements using WYSIWYG editors. In both ways, the size of
the formula description grows considerably. So, if anybody makes a good suggestion
to solve this nuisance, you are heartily welcome (please don't forget the implemen-
tation).

The formulae are embedded with maximum output quality as a fragment with PostScript
code in the KTEX files. This means, that they are visible only with a PostScript viewer
and printer. If a PostScript printer is not available, the PostScript previewer ghostview
can be used to convert the output file in another, more suitable format. ghostview
may also be used for printing the PostScript documents on any ink jet printer.

Texts within formulae are set with BTEX and require therefore no PostScript. As the
graphical capabilities of BTgX are truly limited, the page description language PostScript
becomes a natural choice. The compiler produces a generic output that is translated
by the module be.pm into several final formats. There is also a BTgX output format
that uses only BTEX means, but because of the facts mentioned above, it produces
no high-quality formulae (you may compare for yourself in which cases the output
is acceptable). Itis intended to improve this native BTEX output format in connection
with the package eepic.

If you do not want to use PostScript documents in conjunction with ghostview, a
truly good way is to use BTEX text with PostScript drawing (default output mode) and
produce the formulae as EPS files which subsequently can be included in another
BTEX document with \includegraphics. In this way, you would have one doc-
ument, containing only your formula descriptions and a second one with the real
text, including the EPS pictures. (You may also choose the generated PNG or JPG
pictures for other publication media.)

1.3 Installation

To install OCHEM, unzip the distribution into a temporary directory, which can be
removed after the installation process has been completed. Take care that your UN-
ZIP program keeps the directory structure. If you have unzipped the files, go to the
install subdirectory. Windows users may perform the following steps:

c:\> mkdir tmp

c:\> cd tmp

c:\tmp\> copy <source>chdist.zip .
c:\tmp\> pkzip25 -extra -dir chdist
c:\tmp\> cd install

while UNIX users might type

/tmp> mkdir tmp

/tmp> cd tmp

/tmp/tmp/> cp <source>chdist.zip .
/tmp/tmp/> unzip chdist
/tmp/tmp/> cd install
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Now edit the file install.cfg usingan editor, e. g. Windows NOTEPAD or emacs
or whatever editor you prefer. Change all entries in the configuration file according
to your intended directory structure. After editing the configuration file, start the
installation process, for Windows use:

c:\tmp\install\> edit install.cfg.WIN32
c:\tmp\install\> install.pl WIN32
c:\tmp\install\> cd ..\..

c:\rd tmp/s

Unix users may type

/tmp/tmp/install\> vi install.cfg.UNIX
/tmp/tmp/install\> install.pl UNIX
/tmp/tmp/install\> cd ../..

/tmp> rm -r tmp

The chemistry compiler consists of a few perl scripts and modules. At least the scripts
should be placed in a directory (key BINDIR) which lies in your PATH variable for
execution. The modules (key MODULDIR) may or may not reside in this directory,
too. If you have a preprocessor, the path to it is in the key M4BINDIR. Include files
for M4 lie within a directory specified by the key INCDIR.

The key STYLEDIR codes a directory which is searched by BTgX. To help DVIPS find
a prologue file, the key DVIPSDIR must point to a directory where DVIPS looks for
files.

1.4  Post-installation steps

By internally calling BIEX, the compiler determines the sizes of TgX texts which be-
long to formulae (e.g. element symbols). Depending on BTEX's call syntax on your
computer, you may have to change the value of the parameter LaTeXCMD in the con-
figuration file ochem. cfg. This file is found whereever your BINDIR key points to.
The default value is equivalent to the following call to KTgX:

latex <file>

The default command string latex in the configuration has to be replaced with
tex386 for example, if you start BTEX as follows:

LaTeXCMD=tex386

If a preprocessor for macro expansion should be used, the appropriate package from
a third-party source must be acquired. The GNU M4 preprocessor is supported by
the following macro packages for simple typesetting of natural compounds and com-
monly useful abbreviations:

natur.inc
utils.inc
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1.5

Usage in KTEX

If you want to use another preprocessor, you have to change some entries in the
configuration file ochem. cfg. For a normal call of your preprocessor in the way:

YourPP.exe infile.c_raw outfile.c
use the following value in the configuration file:

PPCMD=YourPP.exe }INFILE) %TMPFILEJ

The descriptions of formulae and reaction schemes are given in a special language
in ASCII files. These files may be independently and manually written from a run-
ning BTEX system, or created online from a BTEX document with embedded chem-
istry code. The latter method is described here due to a bigger convenience (text
and formulae are not splitted across several files).

You have to load the package ochem.sty to get the new environment chemistry
which encloses the formula description:

% file example.tex
\documentclass{...}
\usepackage{ochem}

\begin{document}

\begin{chemistry} [phenol]
formula(C,C)
{ ring(O{ 3: bond(90) atom("OH",L); }
}

\end{chemistry}

\begin{chemistry}
formula(C,C,"Benzen" ,HR,24)

{ ringO{ ¥ }
\end{chemistry}

\end{document}

A complete cycle of such a chemistry document requires two BTEX runs. In the first
one, initiated with

latex example

the contents of all chemistry environments are written into a file \ jobname. chm.
Within this file, each environment is resolved into a schema command, which de-
rives its name from the optional parameter of the corresponding environment. If the
parameter has been omitted, subsequent numbers are used. After compilation, this
name is kept as the name of the fragment file with an extension . ctx and therefore
makes debugging easier.
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The result from the first BTEX run, \ jobname . chm, is compiled by the chemistry com-
piler

chemie.pl example.chm

producing for each chemistry environment a file containing BTgX code which build
the graphical appearance of the formula. In the example above, you compile the
file example.chm and get phenol. ctx. (The extension .ctx can be interpreted as
"chemistry TEX"’; they are not considered to be as important as other “normal” TgX
files because these fragmentary files can easily be recreated. The different extension
in regard to the usual TgX files allows for a more convenient archiving and handling.)

The compiler writes the name for each chemistry environment (phenol in the ex-
ample), enclosed in brackets, to the terminal:

This is OCHEM chemistry compiler version 1.0c 2001-05-25
requires OCHEM.STY 3.0e
[phenol.ctx] [1.ctx]

This is especially helpful if an error interupts the compiler run. The error must be
found in the environment corresponding to the last name printed.

The . ctx files resulting from compilation are automatically loaded during the sec-
ond run of KTEX:

latex example

They form the complete and final graphical representation of the formulae. A warn-
ing is written to the log file, if these load attempts fail. This is always the case during
the very first BTEX run or later whenever new formulae are inserted into the docu-
ment.

IATEX environment for direct commands

The compiler man page

Sometimes material must be added to the intermediate . chm file using chemistry
commands described in section 3.2, e.g. to load libraries or preprocessor macros.
This is done in the chemspecial environment which writes its content literally into
the . chm file:

\begin{chemspecial}
<direct commands>
\end{chemspecial}

To achieve BTEX fragments with the final formulae appearances, you have to compile
the source file, created in the first run of BIgX. The following command compiles
example.chm:
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-type s :

-trace lev :

Configuration

PP -

chemie.pl example.chm

You may find it useful to call the perl script as follows, if you have not installed per!
in a proper way:

perl chemie.pl example.chm
Currently, there are the following compiler switches:

Specifies the output format, s may be one of the values PS, PSLATEX oder LATEX.
Default value is PSLATEX.

Prints a list of all internal calls up to the level depth specified with 1ev. You can use
this switch to find nauseating programming bugs. The default trace depth is 0.

Tells the compiler to start a preprocessor before compiling the source file for resolv-
ing macros. You are expected to have successfully configured chemie.pl for your
favorite preprocessor. Default: pre-process the input file.

Output files in pure BTEX can be achieved by typing
chemie.pl -type LATEX example.chm

Note that this output type is not yet really supported due to graphical reasons. This
possibility is expected to be better realized in future versions of OCHEM.

Coding conventions

Some compiler and appearance settings are kept in a configuration file in INI file for-
mat. This file is called ochem. cfg and can be used to change permanently the val-
ues of important parameters. The compiler settings are usually changed only once
(atleast if you finally got a running system ;-), and the appearance settings like stroke
width or bond lengths remain unchanged, too, and can also be set in the BTEX docu-
ment with the set command. But the configuration file is a good place for changes
without touching the compiler code to support a site-specific appearance.

The following items have to be considered while coding your favorite compounds:

texts like names of formulae or variable identifiers are to be enclosed in double
quotes:

set ("rXsS",24)
formula(C,C,"Formelname" ,HA,24)
{ ...}

If you want to embed double quotes as part of the string itself, you have to dublicate
the double quotes (may causing double trouble):
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formula(C,C,"Kaurans\'""aure" ,HA,24)

{...%

Double double quotes are —as it is in FORTRAN - hints for the parser to read literal
double quotes as part of the string, not as delimiters.
The strange construction """ at the beginning of a string is probably interpreted by

an unmindful author as a representation of a string, starting with a double quote. In
fact, this triple irritates the parser and you have to write it as follows:

formula(C,C,"{}""Ostrogen" ,HA,24)
{ ...}

The empty braces {3} are later ignored by BTEX, but effectively separate the starting
delimiter and the double double quotes.

Units, like length, are either specified in a symbolic manner (e.g. N for a normal
bond) or as number without the unit symbol. For the unit of length, the point (pt) is
assumed.

Comments starts with a percent sign, their scope ends at the end of this line:

% whole line is a comment

formula(L,R) 7 formula of atropinee

{...%

Percent signs within double quotes are parts of the string and will not be interpreted
as the start of a comment. This allows you to publish your impressively high yields
of the tenth step in a big synthesis.

From the M4 preprocessor’s point of view, the percent signs do not specify the begin
of a comment, instead the hash sign # is used. In this case, you can safely use the
sequence %#:

formula(L,R) % normal comment
{ %# TERPEN(0) M4 macro commented out
}

Since the M4 preprocessor uses the hash sign # as comment marker, there arise two
problems:

percent signs are not recognized by M4 as the begin of a comment which leads to
unacceptable replacements in the comments.

If the hash sign # appears in a formula, as for example in bond(#1), the rest of
the line following the hash sign would disappear during the preprocessor run which
would then lead to error messages of the chemistry compiler.

At the beginning of each include file, with the line
changecom(‘//?)

the sequence // is set as mark of comment for M4. To comment out lines, you note
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The chemistry font

formula(L,R) % normal comment
{ %// TERPEN(0) M4 macro commented out

Me_ bond (#1) %// comment

Ring structure modules

The command \chemf ont specifies KTgX font switches for choosing the font used for
typesetting text symbols within formulae. The default is \sffamily; this means, all
characters are as big as the document'’s text, but without serifes. You can set another
font in the preamble of the document, e. g. the normal serife font in smaller size:

\chemfont{\rmfamily\small}
Or the document’s normal font:

\chemfont{}

As section 2.10 of the tutorial explains in more detail, you can build library files
with individual ring structures and use such which already exist by adding them
to the document. Each library has to be loaded explicitly with a command in a
chemspecial environment before it can be used:

\begin{chemspecial}
require("<library>")
\end{chemspecial}

The library bicyclib.pm provides bicyclic natural compounds and is shipped out
with the package. In order to use this library (scheme 1-1), your document has to
look similar to the following:

\documentclass[...]{...}
\usepackage{ochem}

\begin{document}

\begin{chemspecial}
require("bicyclib")
\end{chemspecial}

\begin{chemistry} [camphor]

multiline(1,L)

{ formula(L,R,"cyclopentadiene")
{ ring(, ,H1=3=,,5,0){} }

formula(L,R){ atom("+") }
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formula(L,R,"methylacrylate")
{ bond(-90,=U) bond(-30) atom("COOCH$_3%",L) }

arrow () {}

formula(L,R)
{ ring("bc221h",,5=){ 2: bond(-30) atom("COOCH$_3$",L); }
};

}

\end{chemistry}

\end{document}

Scheme 1-1 Usage of ring structure, here the bicyclohexane, from a library.

New floating environment

This package offers you a new environment schema to typeset floating figures which
offer its own consecutive numbering for reaction schemes, just as the figure envi-
ronment does in a similar way for illustrations. A simple example is the following:

\begin{schema}
\begin{chemistry} [phenolsyn]
<sophisticated synthesis>
\end{chemistry}
\caption{A sophisticated synthesis.\label{phen}}
\end{schema}

In two-column mode, you can feel free to use the star form of the environment
(schemax) to span a reaction scheme over both columns.

formulae are IATEX boxes!

The chemistry environments represent normal BTEX boxes, more exactly, picture
environments or boxes. Therefore, you are able to exploit all positioning hacks used

for BTX illustrations, e. g. the placement of multiple vertically oriented reaction schemes
side by side or the embedding of formulae in the middle of the text, in figures or
separate lines.

formulae as EPS, PNG ... graphics

The method depicted so far of including a formula by help of the chemistry envi-
ronment into a BTEX document prerequisits that the small BTgX files are always pro-
duced beforehand by the formula compiler. Thus, the use of these formulae be-
comes possible only in KTEX documents. By applying the package option separate
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you can produce a document that consists solely of chemistry environments. They
are automatically set by the option on separate pages, that is, each environment on
its own page. With the page style empty which is automatically set, the page num-
bering is left out leaving only the formula visible on the page.

The example formeln.tex contains the following three fomulae:

CO(CHOH),CHs

6,6'-Dibrom-indigo
Indigo Purpur Carminsaure

\documentclass{report}
\usepackage{german}
\usepackage [separate] {ochem}
\begin{document}

\begin{chemistry}[indigo]
formula(L,R,"Indigo" ,HR,24)
{
ring(,,H,,5,0){
vertex(,2){};
0: bond(r,=C,L) ring(,0,H,,5,r){
vertex(,2){};
1: atom("N") bond(r) atom("H");
4: bond(r,=C) atom("0");
};
1: atom("N") bond(r) atom("H");
4: bond(r,=C) atom("0");
}
}
\end{chemistry}

\begin{chemistry} [purpur]
formula(L,R,"\shortstack{6,6’-Dibrom-indigo\\purple}" ,HR,24)
{
ring(,,H,,5,0){
vertex(,2){ 3: bond(r) atom("Br"); };
0: bond(r,=C,L) ring(,0,H,,5,r){
vertex(,2){ 3: bond(r) atom("Br"); };
1: atom("N") bond(r) atom("H");
4: bond(r,=C) atom("0");
};
1: atom("N") bond(r) atom("H");
4: bond(r,=C) atom("0");
}
}
\end{chemistry}

\begin{chemistry}[carminsaeure]
formula(L,R,"Carmins\""aure" ,HR,24)
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{ ring(, ,H){
vertex(,1,4){ 0: bond(r,,Ln) atom("C",C,R) atom("OOH",L);
1: bond(r) atom("0",C,L) atom("H",R);
3: bond(r) atom("C",C,R) atom("H$_3$",L);
};
vertex(,4,1){ 0: bond(r) atom("0",C,R) atom("H",L);
3: bond(r) atom("0",C,R) atom("H",L);
4: bond(r) atom("CO(CHOH)$_4$CH$_3%$",L);
5: bond(r) atom("0",C,R) atom("H",L);
};
0: bond(r,=C) atom("0");
3: bond(r,=C) atom("0");
}
}
\end{chemistry}

\end{document}

(Please pay attention in this example to the fact that each chemistry environment
gets its own name indigo, purpur and carminsaeure!)

This document which solely consists of formulae provides the basis to generate single
EPS files out of the single formulae. The EPS files may be turned into any other
graphics format like JPG or PNG in order to present the formulae on web pages.

To illustrate this, the formula of the carminic acid (which is the third formula or for-
mula on the third page of the document) is converted into the PNG format with the
help of the shown command sequence:

dvips -E -n 1 -p 3 -o carminsaeure.eps formeln.dvi
convert carmin.eps carminsaeure.png

Every computer provides the option -E of dvips to create EPS files. The program
“convert” is part of the open-source graphic tool image magick, which is mainly in-
stalled under Linux or can be found for various systems in the internet.

The included perl script makePic. pl supports the conversion of more than one for-
mula at a time:

makePic.pl -n=3 -format=png -outfile=formeln formeln

This call of the script generates the files farbenl.epsand farbenl.pngto farben3.eps
and farben3.png. The conversion gets yet easier by the fact that the name of each
chemistryenvironment is preserved in a special file formeln.names. These names

can be used by the call

makePic.pl -namefile -format=png formeln

as names for the resulting graphics files. For the given example we get the files
indigo.epsand indigo.png, purpur.epsand purpur.pngaswell as carminsaeure. eps
and carminsaeure.png.

The PNG graphic may be put to use in internet publications, while the EPS graphic
may be included in KlEXdocuments:
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QL= 0

Indigo

1.6

Output formats

\fbox{\includegraphics{indigo.eps}}

If you are only interested in the EPS graphics, no conversion should take place. In
this case, you call the script as follows:

makePic.pl -namefile -noconvert formeln

Please note that the package image magick must be installed on your computer, if
you use the conversion feature!

$be::BE_PSLATEX :

$be::BE_PS :

$be::BE_LATEX :

It is easily possible to generate output in other formats than PostScript. All output
is composed of graphical primitives, using generic commands. These commands
are interpreted in the module be . pm according to the specified output format. The
primitives are lines, circles, text, bonds and arrows. If you find an implementation
for all of these basic elements in your favourite output format, you can further com-
pile all your chemical documents into this format.

In the current version, the following output formats, identified by an integer number,
are available:

texts are typeset using BTEX in a picture environment, the graphical output is writ-
ten in PostScript. The required definitions of bond and arrow types are contained in
a header file in ochem. sty, implemented using \special. The dimensions of text
blocks are determined by writing all occuring text fragments into a temporary file,
applying BTgX to it and reading back the text box sizes (width, height and depth).
This output format currently achieves the best output quality.

This output format produces pure PostScript in the EPS format. Caution: the sizes
of text fragments are not determined and always set to zero, achieving poor results
when the formulae contain texts, not only graphical structures. This format is mainly
used for testing purposes during development without a need for a running BIgX
system. The graphical presentation of the formulae themselves is always correct. If
you are not using text in the formulae, you can use this mode without restrictions
for EPS-generation.

This is a pure BIEX output format. The primitives like lines and circles will use the
eepic package in future, so that some radii and bond shapes are not supported.
Note that this output type is not well supported at the moment.

In fact, sophisticated primitives as cubic splines used by emove are in the current ver-
sion only available in PostScript. The pure BIgX format is not yet completely devel-



1.7 — Macro definitions 13

oped and therefore misses possible features. The results may be looking ugly some-
times. This is definitely a TO DO.

Depending on the output formats, the determination of text sizes has to be done in
different ways. Text size calculation is done immediately after reading the chemical
source code, so that the code will be found in module streambuf.pm instead of
be.pm. In this module, the output format code decides how to calculate text sizes.
Currently, the only way is to call BTgX for that (there is no way for pure PostScript
output with text).

1.7 Macro definitions

The switch -pp calls a preprocessor during compilation of the . chm file generated by
KTEX to resolve macro definitions and to handle conditioned branches in the chem-
istry source. You have to configure the call of your favorite preprocessor in chemie. p1,
when the variable $preproc is evaluated within back ticks. The preprocessor has to
process the content of the input file, it’s name held in $infile, and to transfer the
processed file into the intermediate file $tmpfile. If your top-one preprocessor is
GNU’s M4, you do not have to configure anything.

If your are not planning to use any preprocessor, you do not have to configure the
modules. In this case, you are expected not to use the -pp switch.

The M4 preprocessor

This is not M4’s man page, but a short introduction how to define and use macros
within a BTEX document. Each definition, located in a chemspecial environment,
has to appear before its first use. The macro name and the replacement text are to
be enclosed with a backtick-tick sequence. The actual arguments are available via
the variables $1, $2 and so on. The sequence

\begin{chemspecial}
define(‘C3’, ‘bond(30) atom("$1") bond(-30)’)
\end{chemspecial}

\begin{chemistry}
formula()
{ €c3(0) Cc3(nNH) }
% ~-- aquivalent zu
% bond(30) atom("0") bond(-30)
% ... bond(30) atom("NH") bond(-30)
\end{chemistry}

produces the structure of methoxymethyl-methylamine.

It is possible to write macros handling conditions. As an example, a macro for pre-
sentation of five-member heterocycles (thiophene, furan, pyrane) is to be written.
The ring systems with chalcogens should not carry hydrogen at the hetero atom:

\begin{chemspecial}
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define(‘CP’, ‘ring("cpentane",,1=3=)
{0: atom("$1");
ifelse($1,‘N’,‘0: bond(-90) atom("H");’)
IZD)
\end{chemspecial}

\begin{chemistry}
formula(L,R,"Furan" ,HA,24){ CP(0) }
formula(L,R,"Pyrrole" ,HA,24){ CP(N) }
formula(L,R,"Thiophene" ,HA,24){ CP(S) }
\end{chemistry}

The macro compares its argument with the symbol for nitrogene and generates a
further bond to a hydrogen atom, if the comparison successes.

If you have written some macros for recurrent use, you can collect them in an in-
clude file and load this file as needed — some kind of library at the preprocessor
stage. Detailed examples of macros can be found in sections 3.6 and 3.7. You have
to load the desired include file into your document as follows:

\begin{chemspecial}
include(‘natur.inc’)
\end{chemspecial}

include is another preprocessor command of M4, loading the given file and exe-
cuting the commands in it.

To use macros in the most powerful way, you should design them flexible. The idea
behind the structure TERPEN was that most natural compounds of this type are sub-
stituted at the carbon atoms C*, C?, C* and C8. The rare substitution at C? is given
as parameter, eventually being empty. The other important positions are saved and
can be used as starting points of substituents with restoreXY. The macros’ STEROID
flexibility bases on the use of some ifelse commands, modifying the same basic
structure by adding some side chains as needed. The basic structure is described
once for all derivatives.

Try to find out which atoms are at key positions in your basic structure, and will often
be substituted. Small modifications can be given as parameters. If complex formu-
lae can be expected, the macro call can easily becomes unclear. In these cases, the
storage of the key atom’s position with saveXY may be better. A common struc-
ture with modifications can be built up with common code and some ifelse com-
mands.

Examples, the formula catalogue

In this manual, many examples of coding numerous types of structures are given.
Furthermore, in the directory catalog, you find a PostScript document catalog. ps
and an input file with the BTEX coding, which contains a collection of many prede-
fined formulae, all listed in an index under several names. The catalog is divided
into two parts:

o The first part contains simple to complex basic structures which can serve as starting
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point for your changes. If you need, for example, a phenanthrene derivate, you can
quickly copy the phenanthrene formula and change it as you need it. In the case of
complex formulae, this may help you a lot.

The second part contains numerous final formulae for basic and complex natural
compounds. The found structure can directly be copied as EPS file from the direc-
tory catalog/eps, if you find the formula suitable for your needs. Again, you might
want to change the OCHEM code a bit to fit your needs.

I would be glad if users would contribute formulae to this small collection to create
a wide fund of structures of every type. For this, the structures are given not in a BTgX
document, but in the file catalog.raw. This file contains the OCHEM codings as
well as some meta-information about the formula. The . raw file is processed by sim-
ply running createCatalog.pl. This run creates two KTEX documents, catalogeps
and catalog.tex. The first contains only the formulae for EPS/PNG creation, the
latter the catalog which includes the generated EPS for smarter browsing the collec-
tion. Summarized, the catalog is created as follows:

cd <OCHEMROOT>/catalog
createCatalog.pl

latex catalogeps

chemie.pl catalogeps.chm

latex catalogeps

cp *.eps eps % DOS: copy *.eps eps
makePics.pl -noconvert -namefile catalogeps

latex catalog

latex catalog

makeindex catalog

latex catalog

dvips catalog

rm *.eps % DOS: del *.eps

Further perspective

In the current version of this package | have worked on some ideas about typeset-
ting chemical formulae. It is considered as a living project, meaning that it should
be improved, if it finds attention (critical as well as acclaiming, naturally, whereby
the latter would be better:-) ) from users, and support (better code or parts of it or
include files or ...) from programmers. | trust on you to report errors and to con-
tribute fine extensions. Some interesting TO DOs currently open are (the following
list is not complete):

Improvement of the output with means of KIEX (mode $be: :BE_LATEX). This in-
cludes better appearance of bond shapes as well as sophisticated features such as
cubic splines.

o Calculation and typesetting of text in pure PostScript output (mode $be: :BE_PS).

.tex
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Improvement of the input stream parser and the general design.

Changed code should — analogous to the procedure TEX/BTEX uses — be renamed
and therefore marked as modified, yielding only one version OCHEM Version 4/0d.
This offers a clear and well-known catalogue of features (and anti-features as well).
In order to successfully distribute the improved versions, it is suggested to you to
send comments, criticism and improved code by email to me. | will then do my
best to integrate the enhancements into the current code. Working code is always
preferred :-) The email addresses are

kloeckl@vkcmzd.chemie.uni-mainz.de
i.kloeckl@2k-software.de

The newest version of the package is always available at my OCHEM homepage at
http://www.2k-software.de/ingo/ochem.html

If you encounter problems or have suggestions, please have a look there to see if
the topic in question was already addressed.
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This chapter is intended to give you enough information to succesfully start with
your first steps in typesetting chemical equations with BTEX. It contains a tutorial, but
also some useful hints, special aspects of some of the commands and possibilities
of usage. A more detailed description of the commands is given in the reference
section, chapter 3.

2.1 Your first steps into a chemist’s world

2.1.1  Simple formulae

The description of formulae follows a fairly geometric approach. But be calm, un-
likely your scholarly math lessons, which may have left horrible traces in your mem-
ory, you are not expected to deal with trigonometric equations, attractors and sin-
gularities, with virtuosity. To describe a maximum number of different structures,
there exists only a minimum number of basic elements as bonds in any directions
and different shapes, atomic symbols and text blocks, branches and simple (mono-
cyclic) ring structures. You combine these constructional parts, e. g. by attaching a
bond to a specified atom of a ring structure. The bond gets a specified direction and
style and can carry another bond, resulting in a carbon chain, or ends to a ring atom
of another ring, yielding connected rings. There are no basic units for structures like
indane. In these cases, you start from a six-membered ring and combine a certain
vertex with the corresponding vertex of a five-membered ring.

The advantages over a collection of powerful high-level macros for each structure
type can clearly be seen: much more structures can be constructed out of a very
limited set of elements (and so, lucky for me, only a few elements have to be im-
plemented in the compiler). A few simple commands can also be mastered more
rapidly than a large number.

There are also less obvious facts (called disadvantages by some people): compli-
cated structures require more simple elements. Due to the fact that bond direc-
tions have to be given (there is really no molecular modelling calculation in this lit-
tle perl script) by angles, you have to think rather more like mathematicians do than
chemists. But most of your structures use nearly always the same set of angles. Some
symbolic angles help you to abstract from concrete angles in degrees.

Each formula is set within a formula command. The parameters of this command
are described later in conjunction with the building of reaction chains. The body
consists of the geometric description of the structure. Some simple examples will
demonstrate this. The structure is an aliphatic chain:

17
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formula(L,R){
bond (30) bond(-30) bond(30,=) bond(-30)
}

For the double bond the notation of an optional parameter is required. Simple
bonds correspond to the default value and need not be especially noted. Attention
must be paid to the recurring angles 30°, 150°, —30° and —150° for slanted bonds.
These angles harmonize with the edges of six-membered rings standing upright on
a vertex. If rings are preferred which rest on their edges, then the angles 60°, 120°,
—60° and —120° are used. For other bonds only the main angles 0°, 90°, 180° and
—90° come into play (with minor exceptions).

Since chains of single bonds quite often appear, a short notation is possible in which
several descriptions of bonds, separated by semicola, are summarized. The above
formula may also be noted as

formula(L,R){ bond(30;-30;30,=;-30) }

The main disadvantage of the presented description is that the actual angles do not
allow to show an identical carbon chain in a different, for example turned, orienta-
tion without recalculating all angles. A higher abstraction will be achieved through
symbolic angles which are especially important in conjunction with ring systems.
They will be introduced further down. Thus, the example aliphate can be noted as
follows:

formula(L,R){ bond(r; r/; r,=; r/) }

r is a special angle which normally corresponds to a bond branching away in radial
direction of a ring system. If the description of the formula contains no ring system,
a default value of 30° for r, 90° for t and —90° for b is set.

The (compressed) description can therefore be read as follows: create a radial bond;
create a branching bond; create a bond in the original (radial) direction as double
bond; create again a branching bond. Such a description is independent of actual
angles and may be placed therefore at different positions within the formula with-
out recalculating all angles. The command ring sets itself appropriate values for
the symbolic angles, in case of pure alkyle chains the manual setting of angles with
the command set may be seldomly required (examples in the reference section
—bond). With actual angles it is always possible to enforce the desired direction,
even if symbolic angles are intensely used.

The second and all further formulae show the way in which atomic symbols are in-
corporated into the set of bonds. Note the positioning of the atom groups: single
elements at terminal positions are mostly centered to the end of the bond with the
default C,C of the command atom, while longer texts fit closely with an edge (such
a fitting edge would be advisable on the grounds of unity for such letters like “O”,
but causes naturally a good deal of effort).

formula(L,R){
atom("HOOC",L,R) bond(30;-30) atom("0")

HOOC~ 0""CH,CH,~" >COOH bond (30;-30) atom("CH$_2$CH$_2$",L,R)

bond (30;-30) atom("COOH",L,R)
}
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HOO COOH

OOH COOH

OOH

0
— CHy—CH,—C7
HO—CH,—CH,—C

A special problem arises if bonds of 90° or —90° end in long texts, for example in
the carboxyl or hydroxyl group. To position these long groups not aside but (better)
centered toward the “C”, the text is split in a centered (C) and a sideways positioned
part (OOH) (formula left). The formula on the right shows the appearance of the
carboxyl group, if it would have been positioned in one piece with the option L
(bond above). Centering of the text would have resulted in a catastrophy (bond
below).

formula(L,R){
ring (O {
0: bond(r) atom("C",C,R) atom("0O0H",L);
3: bond(r) atom("C",C,L) atom("HOO",R);
}
}
formula(L,R){
ring(){
0: bond(r) atom("COOH",C);
3: bond(r) atom("COOH",L); }
}

The problem will not occur if slanted bonds meet with a long text and are positioned
at the side of the text, as it was demonstrated with the ether chain and the two
carboxy! groups.

Ring structures can be drawn with the command ring. In the simplest case, you
get a benzene ring. Various parameters are used to typeset n-membered rings and
other basic structures (camphore and others) and also to modify the bond types (un-
satured, for example). With rings, we have for the first time elements from which
several substituents can branch. These substituents are described like normal for-
mulae, they must be terminated by ;. The ring atom from which the substituent
branches is identified by an integer number, starting from zero and shown in tables
in the reference section for the command ring. It is possible (and recommended)
to use symbolic angles, e.g. r for radial bonds instead of actual angles (symbolic
angles are discussed in detail in the next section):

formula(L,R){
ring(){
0: bond(r);
3: bond(r) atom("C",C,R) atom("OOH",L);
4: bond(r; r/; r); }
}

Chains can provide another variant of branching. branch stores the current posi-
tion and allows to describe side chains, each one starting at the stored position and
terminated with ;:

formula(L,R){
atom("HO",L,R) bond(0)
atom("CH$_2$",L,R) bond(0)
atom("CH$_2$",L,R) bond(0)
branch { bond(-45) atom("OH", L);
bond (45,=) atom("0",L);
atom("C") ;
}
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Since this position remains unchanged after the command'’s body is executed, the
main line of the chain can be continued, and only the side chains must be described
within the command branch:

formula(L,R){
bond (30)
OH branch { bond(120,t);
/)y;\// bond(60,0) atom("0",C,R) atom("H",L);
}
bond (-30; 30)
}

The commands —saveXY and —restoreXY allow you to store the current position,
identified by an integer number, and later to restore this position. The recursive
nesting of structure descriptions using the command branch can be transformed
into a linear description. This may be useful especially on deep nesting levels.

formula(L,R){
atom("HO",L,R) bond(0)
o atom("CH$_2$",L,R) bond(0)
/ atom("CH$_2$",L,R) bond(0)
HO_CHQ_CHz_C<OH saveXY (#1) atom("C")
restoreXY(#1) bond(-45) atom("OH", L)
restoreXY(#1) bond(45,=) atom("0",L)

2.1.2  Alignment of formulae

When you have described a formula, you can use it within the command formula
as a prebuilt unit and let it automatically be aligned in respect to other reaction chain
elements (other formulae and arrows). The parameters of the command specify how
the formulae should be aligned relative to a starting point (centered, left-aligned,
with edge or corner) and where the connection point should be found. The con-
nection point is the starting point for the next element in the chain (formula or ar-
row). If you are only interested in inserting a formula into a text, both parameters
can be chosen arbitrarily in this case and their default values will work fine. The
parameters become meaningful only in the interaction of several formulae.

Scheme 2-1 gives an example for the above said. In the left part, the formulae ap-
pear side by side, vertically aligned to a common center line. The position param-
eters are L,R, meaning that the left formula lies on the starting point (the formula
extends to the right) and the base point for the second formula is on the right side of
the first one. In the right part, the same formulae are positioned with T,B, resulting
in a top-to-bottom chain, again aligned to a common, vertical center line:

\begin{chemistry}[intro2a]
formula(L,R){ bond(30; -30; 30,=; -30) }

formula(L,R)
{ atom("HOOC",L,R) bond(30; -30; 30) atom("COOH", L) }

formula(L,R)
{ ring()
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{ 0: bond(r);
4: bond(r; r/; r); %}
}
\end{chemistry}
\hfil
\begin{chemistry}[intro2b]
formula(T,B){ bond(30; -30; 30,=; -30) }

formula(T,B)
{ atom("HOOC",L,R) bond(30; -30; 30) atom("COOH", L) }

formula(T,B)

{ ring()
{ 0: bond(r);
4: bond(r; r/; r); }
}
\end{chemistry}
SN
HOOC/\/COOH

NN Hooc N CO0H ©/\/ ©/\/

Scheme 2—-1 The positioning parameter describes the relations between the formu-
lae. Left: formulae aligned left to right, right: formulae aligned top to bottom.

Both variants to join formulae are probably the most typical ones, because they build
linear reaction chains. Later, it is shown how to build up branches in the chains.
However, two important special cases have to be mentioned here:

o Aregular table-like position cannot be achieved by the means shown so far, because
the position of each following formula depends on the size of all previous ones. The
command —gotoXY sets the starting point of a formula independent of the context
to a given position and therefore forms the basis for a regular placement. Examples
can be found in the reference of gotoXY on page 100.

o Afree placement of formulae may be appropriate when two or more educts lead to a
product, but should not appear in single row, one after the other joined through plus
signs, but instead they should be more freely distributed “cloud-like”. This may be
realized with —shiftXY which shifts the current point by a given amount of space.
Examples are given in the tutorial in section 2.6.

2.2  More complex formulae

This section introduces complex formulae and the means required for their descrip-
tion. Some of the used hacks are mentioned in the alphabetically sorted command
reference, others aren't, so it is recommended that you read the reference section,
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too. If you think you cannot describe a given structure, look over the formulae
shown here, maybe you get an idea how to solve your problem. Sometimes and
as a last means, you can try it with “wild” lines :-)

2.2.1  Symbolic angles

The command ring sets three important angle values for the symbolic angles r, t
and b, used for radial bonds and bonds tangential to the ring vertices. These values
are processed by the command bond, if you use one of the mentioned symbolic
angles. In this way you can easily describe formulae, especially with rings, without
caring about trigonometric calculations. The next two compounds show the usage
of all three symbols:
formula(L,R){

ring(, ,H,,5,90){

0: bond(r);
top 2: bond(t) atom("top",L);
bottom . 2: bond(b) atom("bottom",L); }

formula(L,R){

ring(, ,H1=){
0: bond(t,t); O: bond(b,o0);
3: bond(r);
4: bond(xr); }
}

In structures with stereoscopic intention (ring types chair, bc2220 and so on), the
meaning of the angles t and b as “top” and “bottom” (or above and below) becomes
clear, examples can be found in the introductory section for the library modules and
the —ring command.

When a bond, given as symbolic angle, terminates at a second ring, the angle is
unknown by which the second ring has to be turned around in order to achieve
one of the relations r, t or b for the bond and the second ring. This knowledge
is unnecessary, because the turning angle for the second ring can be replaced by a
symbolic angle, too. Only the number of the ring atom being the bond’s target must
be specified:

formula(L,R){
ringO{
4: bond(r)
ring(,4,H,,5,r){
0: bond(r);
};
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Acoran

formula(L,R){
ring(O{
4: bond(r)
ring(,0,H,,5,r){
0: bond(t,t);
};
}
}
formula(L,R){
ring(O{
4: bond(r,o)
ring(,0,H,,5,b){
0: bond(t,t);
};
}
}

As it can be deduced from acorane, spiro compounds can also be drawn connecting
the two rings directly, not by a bond. The symbolic angle r is a default for turning

angles:

formula(L,R,"Acoran" ,HR,24){

ring(, ,H){
1: bond(x);
4: ring(,0,H,,5,r){
1: bond(r);
4: bond(r) branch { bond(r+);
bond(r-); };
};
}

}

A following + or - increases or decreases the angle by 60°, respectively. From the
view point of the bond to be drawn, this correlates to a turn left (right) about 60°.
You can therefore easily describe branched alkyle compounds, especially isopropyle
substituents:

formula(L,R){
ring(, ,H1=){
3: bond(r) branch { bond(r+); Dbond(xr-); };
1: bond(r) branch { bond(x+); bond(r-); }; }

If one or both of the branches consists of more than one methylene unit, it is better
to describe the branch with rt or r/t, see below.

With the modifiers + and -, longer carbon chains can be typeset without knowledge
of the exact angles. Since the turn is relative to the current direction, all identical
carbon chains can be portrayed with the same description, independently of the
ring position they start from. But note that all chains are rotated clones of one and
the same chain and are therefore oriented differently, depending on their starting
position in the ring:
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;

formula(T,B){
ring(, ,H1=,,7,90){
1: bond(r; r-; r; r-; r);
2: bond(r; r-; r; r-) ;
5: bond(r; r-; r; r-) ; 1}

formula(T,B){
ring(, ,H1=,,6,90){
1: bond(r; r-; r; r-; r);
2: bond(r; r-; r; r-) ;
5: bond(r; r-; r; r-) ; }

formula(L,R){
ring(,,H,,5,90){
vertex(,1,4,H,6){
0: bond(r);
1: bond(r; r-; r,=U; r+; r);
};
vertex(,3,1,H,7){
0: bond(r);
4: bond(r; r-; r,=U; r+; r);
5: bond(r; r-; r,=U; r+; r);
};
}
}

Some of these chains are usually depicted with a horizontal orientation. If such a
construction is desired, you can apply the symbolic angle r/ instead of the fixed turn
right r-. This declaration does not enforce a turn by a certain amount, but takes the
current direction of the bond into consideration: if the bond points to the top-right
(e.g. 30°), then the next bond will be drawn to the bottom-right (-30°). Bonds at
the bottom-left are followed by bonds at the top-left and so forth. This construction
is most agreeable for six-membered rings:

formula(T,B){
ring(, ,H1=,,7,90){
1: bond(r; r/; r; r/; 1) ;
2: bond(r; r/; r; /) ;
5: bond(r; r/; r; /) ; }
}
formula(T,B){
ring(, ,H1=,,6,90){
1: bond(r; r/; r; r/; 1) ;
2: bond(r; r/; r; /) ;
5: bond(r; r/; r; r/) ; }
}

Repeated usage of the + und - symbols increases or decreases the current direction
by 60°, so that even nested carbon chains can be organized without information
about the exact angles of the current ring-position:
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formula(L,R){
ring(,,H,,5,90){
1: bond(r)

branch { bond(r+); }
bond (r-,=)
branch { bond(r--; r---; r--); }
bond(r) bond(r-); }

}

The following example discusses a possibility of chain-branching in more detail. Asa
result of the fixation of a left-turn for the methyl branch (r+), we get on the “left side”
of the ring different chains from those on the “right side” in respect to the orientation
of the methyl groups. The chains arise through strict rotation:

formula(L,R){
ring(O{
1: bond(r) branch { bond(r+); } bond(r-;r);
2: bond(r) branch { bond(r+); } bond(r-;r);
4: bond(r) branch { bond(r+); } bond(r-;r);
5: bond(r) branch { bond(r+); } bond(r-;r); }
}

The symbolic angles rt und r/t try to achieve a more appropriate, that means,
more symmetrical and at the coordinate axes oriented placement of such attach-
ments. Left- and right-turns are allowed and are automatically resolved (in the ex-
ample, the bonds to some of the inner methyl groups must be shortened to prevent
them from overlapping):

formula(L,R){
ring(O{
1: bond(r) branch { bond(rt,,s); }
bond(r/) branch { bond(r/t,,s); } bond(r);
2: bond(r) branch { bond(rt,,s); }
bond(r/) branch { bond(r/t,,s); } bond(r);
4: bond(r) branch { bond(rt,,s); }
bond(r/) branch { bond(r/t,,s); } bond(r);
5: bond(r) branch { bond(rt,,s); }
bond(xr/) branch { bond(r/t,,s); } bond(xr); }
}

For the delineation of stereo chemistry at double bonds, the symbolic angle r\ must
be included. With this angle, a bond against the angle r/ will be drawn. The effects
and the correct notation of E/Z isomerie independent of actual angles is demon-
strated in the following formula:
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formula(T,B," (E)-Isomer",HR,24){

N\
=~ ring O{
— N 1: bond(r; r/; r,=; r/; r; r/);

(E)-Isomer

(Z)-1somer

2.2.2  Linear systems

2: bond(r; r/; r,=; r/; r; r/);
4: bond(r; r/; r,=; r/; r; r/);
5: bond(r; r/; r,=; x/; r; r/); }
}
formula(T,B,"(Z)-Isomer",HR,24){
ring(){
1: bond(r; r/; r,=; r\; r; r/);
2: bond(r; r/; r,=; r\; r; r/);
4: bond(r; r/; r,=; r\; r; r/);
5: bond(r; r/; r,=; r\; r; r/); }
}

Chlorin

Many formula drawings can be expressed as linear sequences of simple bonds or
identical resp. similar construction units.

The relatively complex ring of chlorine may be viewed in spite of its ring construction
as a linear system of four pyrrole methylene units (another method of description of
this system is mentioned on page 93). Each of these methylene bridges ends at the
pyrrole ring of the next unit. The ring may be therefore described by the nested
and almost identical depiction of the basic unit. The formation of the ring results
out of the correct choice of the angles on symmetrical grounds. (Since the continu-
ation points of a structural unit are always dependent of its predecessor, the usage
of linearization with saveXY and restoreXY brings no advantage. A benefit could
only be achieved if the starting points of the structural units would be available at
the very beginning as in the construction shown on page 93.)

formula(L,R,"Chlorin",HR,24){
ring(, ,H1=3=,,5,-45){
0: atom("N") bond(-45) atom("H");
4: bond(30) bond(-30,=)
ring(,1,H2=4=,,5,-135){
0: atom("N");
4: bond(-60) bond(-120,=)
ring(,1,H2=,,5,135){
0: atom("N") bond(135) atom("H");
4: bond(-150,=) bond(150)
ring(,1,H0=,,5,45){
0: atom("N");
4: bond(120,=) bond(60);
};
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2.2.3  Linear anellated rings

Guajan

B-Cadinen

Hirsutan

In the simplest case of annellated ring systems, all rings share a common atom. It
proves useful that the command ring does not shift the actual starting point and
thus, if the actual point corresponds to the shared atom, all rings can be drawn by
subsequent ring commands. This approach, however, brings up some problems,
e.g. with bond length of rings with different numbers of atoms. Although it is pos-
sible to set all rings that exist in the same nesting level with subsequent ring com-
mands, varying the starting points, it is better to use the vertex command for sim-
ple ring systems, too. Note that a certain edge length is enforced due to the use of
a length specification of #N:

formula(L,R,"guajane" ,HR,24){
ring(, ,H,#N,7,0){
1: bond(r) branch { bond(r+); bond(r-); };
5: bond(r);
vertex(,3,2,H,5){ 4: bond(r); };
}
}

formula(L,R,"$\beta$-Cadinen" ,HR,24){
ring(, ,H3=){
0: bond(r,t) branch{ bond(r+); bond(r-);};
1: bond(t,t) atom("H");
2: bond(b,o0) atom("H");
3: bond(r);
vertex(,1,4,H1=){ 1: bond(r); };
}
}

If not all rings possess a shared atom, a basic ring must be chosen which carries the
other rings as annellated substituents. For simplicity’s sake, it may be advisable to
choose the most complex substituted ring as basis. In this case, simpler substitution
atthe annellating rings is gained. In the case of hirsutane, the central five-membered
ring is chosen as basis, because in this way two simple rings appear as substituents. If
one of the terminating rings would be chosen, the central five-membered ring would
become its substituent which in turn would carry another ring as substituent. And
this would make the formula really complicated! In this and the following formulae
the basic ring is emphasized by a larger stroke width:

formula(L,R,"Hirsutan" ,HR,24){
ring(, ,H,,5,900{
vertex(,1,2,H,5){ 0: bond(t); 0: bond(b); };
vertex(,3,3,H,5){ 0: bond(xr); };
3: bond(t);
}
}

The vertex syntax is responsible for the otherwise complicated calculations of the
correct starting points and turning angles of all annellated rings. A further example
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demonstrates how easy assembled ring systems may be described. Both variants il-
lustrate that the choice of the basic ring influences the overall turning of the formula:
in the first case, the unturned cyclooctane forms the basis. The five-membered ring
is attached to the slanted [a] edge and leads to the impression of the molecule to
be turned slightly. In the second case, with the five-membered ring as basis, the
probably more desired impression of a horizontally oriented formula arises:

formula(L,R){
ring(, ,H,,8,00{
vertex(,0,1,H0=,5){ 0: bond(xr); };
0: bond(t);
}
}

formula(L,R){
ring(,,H1=,,5,0){
vertex(,2,0,H,8){ 0: bond(t); };
1: bond(r);
}
}

In the above examples, the variable length of edges of the rings should be noted.
This is due to the fact that the regular ring systems possess a common diameter so
that the bond lengths of higher ring systems decrease. The choice of the basic ring
system influences the lengths of all annellated rings. With a size specification like L,
other sizes can be choosen. To enforce the bonds to have a certain length, you can
use the # size syntax, e.g. #L to have all ring vertices have the length of a L bond:

formula(L,R){
ring(, ,H,L,8,0){
vertex(,0,1,H0=,5){ 0: bond(xr); };
0: bond(t);
}
}

formula(L,R){
ring(, ,H,#L,8,0){
vertex(,0,1,H0=,5){ 0: bond(r); };
0: bond(t);
}
}

Several substituents lead to complicated systems in which the annellated rings them-
selves carry more rings so that systems come into existence in which not all rings are
adjoined to an edge of the basic ring. This will be illustrated by the following exam-
ples:

formula(L,R){
ring(,,H,,5,90){
vertex(,1,0,,6){ };
vertex(,3,0,H2=4=,6){ };
vertex(,4,0,H,6){ };
}
}
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formula(L,R){
ring(,,H,,8,0){
vertex(,1,1,,6){

‘ 0: bond(r);
@ vertex(,3,0,H2=4=,7){};
O };
0: bond(r);
}
}

formula(L,R,"Buxenin-G",HR,24){
ring(, ,H4=,,7,0){
0: bond(b,t) atom("H");
vertex(,3,1,H,6){
3: bond(t); 3: bond(b);
4: bond(r,t) atom("H$_3$CNH",R); I};
vertex(,6,4,H5=,6){
2: bond(t,t); 3: bond(-90,0);

vertex(,2,2,H,5){
H3CNH 4: bond(r)
branch { bond(r+) atom("N",C,R)
Buxenin-G atom("H$_2¢",L); }
bond (r-);
};
};

The common bond needs not always to be visible. The humulene consists out of a
nine-membered ring condensed with a four-membered ring. The impression of the
square-shaped hole is simply caused by an invisible bond in each of the rings:

formula(L,R,"Humulen",HR,24){
ring(, ,H4s,,9,0){
3: bond(r);
vertex(,4,3,H3s,4,-45){
2: bond(100,<.); 2: bond(170,<<);

};
8: bond(45);
}
}

Humulen

2.2.4  Manual construction of annellated systems

You have seen in the last section how easily polynuclear systems can be build with
vertex. Unfortunately, this syntax is only implemented for ring systems of the type
ring (polygons with n vertices). Using this syntax with rings of e. g. type cpentane is
impossible. In these cases, you have to calculate all data yourself, but here is a brief
description of this procedure. It bases on polygons, too (due to their simplicity), but
can easily be used for all types of ring systems if you know their typical angles. The
polygons serving as base systems are not rotated in the examples, their parameter
<p2> is zero.
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Table 2.1 Correlation of vertex angles to individual vertices for different polygons
(cyclopentane, n = 5 to cyclooctane, n = 8). The vertex number is identical to the
number of a substituent.

Edge edgenumber n=5 n=6 n=7 n=8

a 0 54 60 64 67
b 1 ~18 0 13 23
c 2 —90 —60 -38 —22
d 3 ~162 —120 -90 —67
e 4 —234 —180 —141 —112
f 5 —240 —193 —157
g 6 —244  —202
h 7 —247

To each vertex, an angle 6; corresponds to it as shown in table 2.1. These values
have to be inserted into the general formula. In the formula, the symbols have the
following meaning: &,y is the desired rotating angle of the base system, ¢ the cor-
rect rotating angle of the substitutingring, 6, and 65 the vertex angles of the colliding
vertices of base and substituting ring:

= psou + (01 — 62) + 180

The following compound bases on the five-membered pyrrolidin and is shown ro-
tated by 0°, 45° and 90°. The origins of the furan rings are indicated by the oxygen,
the origin of pyrrolidin by nitrogen.

Atthe beginning, we build the structure without turning the pyrrolidin nucleus around.
Due to the following correspondences between the vertices we get the angles:

pyrrolidine furan angle
vertex substituenti vertex starting atom j
b 1 e 44+41=5 04 —-18—-—-180+180=—-18
d 3 b 1+1=2 04+ —-162—-0+180 =18
e 4 e 4+1=5 0+ —234—-—-180+ 180 = —234

The choice of the vertices which shall correspond to each other determines the po-
sition of the origin of the rotated ring. The origin is given in the table. The vertex
label is the position number i of a substituent of the base ring (table 2.1). The start-
ing atom j that has to be inserted in the description list of the substituting ring is the
vertex label incremented by one.

formula(L,R){
ring(, ,H,#N,5,0){

1: ring(,5,H,#N,6,-18){ 0: atom("0");};
ring(,2,H,#N,6,18){ 0: atom("0");};
ring(,5,H,#N,6,-234){ 0: atom("0");};
atom("N"); }

O B W
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In all rotated systems, the rotating angle @5, has to be added to all angles.

formula(L,R){
ring(, ,H,#N,5,90){
é;ﬁ\ﬁ 1: ring(,5,H,#N,6,72){ 0: atom("0");};
| N 0] 3: ring(,2,H,#N,6,108){ 0: atom("0");};
<\::S;;Z::/> 4: ring(,5,H,#N,6,-144){ 0: atom("0");};
0: atom("N"); }
}

At last a compound, consisting of a five-, seven- and eight-membered ring:

formula(L,R){
ring(, ,H,#N,7,0){
4: ring(,3,H,#N,5,129){ 0: bond(r);}; % O + -141 - -90 + 180
1: ring(,6,H,#N,8,350){ 0: bond(r,<<);}; % 0 + 13 - -157 + 180
0: bond(r); }

The typical angles of a ring type like cpentane are those of a regular six-membered
ring, where the missing vertex has to be considered in the subsequent labeling.

2.2.5 Angular annellated ring systems

It may be difficult to describe polynuclear systems with bonds shared by several
rings, if the number of ring members differs. The angles of a six-membered ring
are different (smaller) in comparison to that of a five-membered system. There is
no problem with condensed six-membered rings, in the common case of six- and
five-membered rings, you can choose the ring type cpentane for the latter, whose
angles fit to the cyclohexane’s angle.

formula(L,R," ($+$)-Hibiscon A" ,HR,24){
ring(, ,H){
vertex("cpentane",3,0,0=3=){
2: atom("0");
};
vertex(,4,1,H){
0: bond(r,o) branch{ bond(r+); bond(xr-);};

’

}
1: bond(r,o) atom("HO",R);
2
5

: bond(r,=C) atom("0");
: bond(b,o0) atom("H");

(+)-Hibiscon A

}
}

The crassanine shows the combination of bicyclo[2.2.2]octane with a six-membered
ring. The bond lengths in the bicyclus fit to all others. The length of the five-membered
ring’s bonds have to be reduced a bit with the specification #N, prohibiting a too
large benzene ring in comparison to the cyclohexane.
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2.2.6

Crassanin

(Carbon-)bridges

formula(L,R,"crassanine", HR,24){
ring("bc2220",, ,N){
2: bond(30) bond(-30);
0: ring(,,H,M{
1: ring(,4,H,#N,5,-70){
0: bond(-70,=C) atom("0");
1: atom("N") bond(r) atom("H");
vertex(,2,1){
4: bond(r) atom("0",C,L) atom("H$_3$C",R);
5: bond(r) atom("0",C,L) atom("H$_3$C",R);
};
};
};
0: bond(-90,0,NN) atom("C",C,R) atom("OOCH$_3$",L);
: bond(-60,<<) atom("H");
7: atom("N"); }

IS

}

If other ring sizes are added, it is the easiest way to build first a basic construction of
five- and six-membered rings. Then, the larger or smaller irregular rings are added
as carbon bridges, as it is shown in the next section.

Bridges may occur in various forms. In the following cases, the dashed bonds are
regarded as bridges.

@@ () (9

Case (a) is characterized by the fact that the bridge is a copy of a part of the basic ring
system which has been shifted. Problems of positioning the compound are avoided
if the corresponding part of the compound is exactly copied (parallel shifts keep the
angles).

Case (b) is more problematic because the bridge possesses no counterpart within the
basic compound. If the bridge starts from one bridge head, it is difficult to calculate
the angle and the length of the bond which closes the ring (the last bond of the
bridge) in order to hit the other bridge head. Thus, | recommend to build the bridge
simultaneously from both bridge heads and to store the last position of one of the
bridge parts. This position will serve as aim of a “wild line” which will be drawn
from the other bridge part with bond (#n). For the wild line, the bond of the bridge
will be best chosen of which you know least how angle and length are to be set.

Case (c) is even more problematic, because the bridge consists of only one single
atom, so you have to calculate the position of this atom instead of using wild lines.
It may be helpful to jump by means of an invisible bond to a point where the bridge
is symmetrically parted. This position must be stored. Then you can draw with
bond (#n) two wild lines from both bridge heads to this stored position. Which point
you choose as a target for the bridge atom depends somewhat from your geomet-
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Case (a)

(—)-Cytisin

rical imagination.

The construction of a symmetrically positioned target will be a lot easier, if the ex-
tended mathematical expressions bond (=<expr>) are applied, because the calcula-
tion of central positions in relation to known starting positions (for example ringatoms
as bridge heads) will be performed by the computer. Some examples follow.

Cytisine is a demonstration for the simple case that the bridge corresponds to an
already existing part of the compound which has only been shifted. The copied
and shifted bridge is dashed (which has in this case no stereochemical meaning):

formula(L,R,"($-$)-Cytisin" ,HR,24) {
ring(, ,H){
vertex(,1,4,H1=3=){
0: bond(r,=C) atom("0");
5: atom("N");
bond(r,t) atom("H");
bond(r,t) atom("H");
bond(30,0; -30,0) atom("N")
branch { bond(30,0) atom("H"); }
bond(-90,0; -150,0);

w oW

}
}

The morphinee also possesses a bridge which looks like a sector of the six-membered
ring and which hits exactly after the shift again on a ring atom of the basic com-
pound. In contrast to cytisine, here short bonds with unusual angles for the shift
and thicker bonds for the bridge in order to achieve a more three-dimensional im-
pression are used. Since the furan ring is distorted because of the three annellated
rings (case (c)), first a morphinee derivative will be shown which possesses only the
discussed, shifted bridge (the complete construction of the morphinee is shown un-
der case (c)):

formula(L,R) {
ring(, ,H){
vertex(,2,5,H1=3=5=){};
vertex(,0,3,H5=){};
1: bond(-70,t,S; -30,p; 30,t) atom("N")
branch { bond(-30); }
bond(110,t,5);
}
}

The bridge in lycopodine is another example for shifted copies of the basic structural
unit:
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Lycopodin

Case (b)

(—)-Kauran

formula(L,R,"Lycopodin",HR,24) {
ring(,0,H) {

vertex(,0,3,H){
4: atom("N");

};

vertex(,5,2,H){};

1: bond(30,<<) atom("H");

4: bond(r,=C) atom("0");

0: bond(-170,t,S; 150,p)
branch { bond(-150,<.); bond(150,<<) atom("H"); }
bond (90,t; 10,t,S);

The following two examples show a bridge which is constructed by the approxima-
tion from both bridge heads, while the closing of the ring is achieved by a wild line
(bridge again drawn as a dashed line):

formula(L,R){
ring(,2,H){
1: bond(-120,0) saveXY(#1);
vertex(,5,2,H,5){
1: bond(-150,0; #1,0);
};
}
}

In the case of the kaurane, a symmetrical construction of the bridge is implemented
through the possibility to add or subtract constant angles (here 20°) to bond angles:

formula(L,R,"($-$)-Kauran",HR,24) {
ring(, ,H){
3: bond(-90,t) atom("H");
2: bond(b,o0);
1: bond(b,t) atom("H");
vertex(,1,1,H){
3: bond(-120,t); 3: bond(-60,0);
};
vertex(,3,0,H){
4: bond(-20+v(3),0) saveXY(#1) bond(30,0);
0: bond(20-v(0),0) bond(#1,0);
};
}
}

The depiction of a humulene-related structure results in difficulties, if the E/Z iso-
meres caused by the double bond in the nine-membered ring shall be correctly
drawn. With the help of wild lines, the following construction can be utilized: the
nine-membered ring can be understood as a bridge with an unknown part in it
which can be represented by a wild line. In the example, we get an asymmetry, be-
cause this wild line does not end in the vertical center of the four-membered ring.
But you will achieve a construction for a precise symmetrical formula under case (c).
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-

Humulenderivat wild

Case (c)

(c)

#2
#1

Humulenderivat exakt

formula(L,R,"Humulenderivat wild",HR,24) {
ring(, ,H,#N,4,-45) {
0: bond(-70; -10; 50; 110,=) saveXY(#1);
3: bond(70; 10; -50; #1);
}
}

The solution for this problem was already given; in the first example it is easy to
determine the target because it lies in a radial prolongation of a ring atom, which is
between the two bridge heads (here position 5).

formula(L,R,"(c)",HR,24){
ring(, ,H){
5: saveXY(#1,-30,N);
0: bond(#1,0);
4: bond(#1,0);
}
}

With the help of the extended formula of the bond command a precise solution for
the already mentioned problems under case (b) can be attained. The exact con-
struction of the humulene derivative builds two symmetrical bridges, starting from
the four-membered ring. They extend to the last, unknown part and their destina-
tion points are stored as positions 1 und 2. The last atom is now found exactly half
between the distance from position 2 to position 1 (0.5% (#2,#1,0.5)), shifted by
a half bond length to the left (-{n,03}):

formula(L,R,"Humulenderivat exakt",HR,24) {
ring(, ,H,#N,4,-45) {
0: bond(-70; -10; 50) saveXY(#1);
3: bond(70; 10; -50) saveXY(#2)
bond (=0.5% (#1-#2)-{n,0},=; #1);
}
}

In a similar way the morphinee can be constructed. The two important positions,
namely point 1 and 2, between which the ether oxygen lies, are each located in one
of the annellated rings:
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formula(L,R,"morphine" ,HR,24) {
ring(, ,H){

vertex(,2,5,H1=3=5=){
1: saveXY(#1);
2: bond(r) atom("0",C,L) atom("H",R);

};

vertex(,0,3,H5=){
1: bond(r,<.) atom("0",C,L) atom("H",R);
2: bond(=0.5*%(#1-#cur)-{N,0},<.) atom("0") bond(#1);

};

0: bond(90,<<) atom("H");

5: bond(t,<.) atom("H");

Morphin 1: bond(-70,t,S; -30,p; 30,t) atom("N")
branch { bond(-30); }
bond(110,t,S);
}
}
Wild lines

The above shown examples hopefully fullfilled the purpose to demonstrate how very
helpful wild lines may be, they are most important for tweaking the structures into
the desired form ;-) If the bridges are very complicated, long and often confusing
command procedures have to be written. It may be helpful to store the position of
one or both bridge heads with the command saveXY and to come back to them
later, outside of the nested description of the basic structural unit, with the com-
mand restoreXY.

2.3 Reaction chains

The concept of the automatical arrangement of formulae can be extended with an-
other basic element, the reaction arrow. Thereby, formulae can not only be ar-
ranged next to each other, but with interposed arrows be combined to complete
reaction schemes or chains. Beside a simple linear sequence, branches and their
opposites, joins and multi-line schemes are possible.

2.3.1  Horizontally linear sequences

Instead of the two already described positioning parameters of a formula, the arrow
is applied with a direction and length in order to determine the starting point for
the next element in the chain. The arrow always starts at the current point. In the
simplest case of a chain directed horizontally from left to right, a sequence of for-
mulae with the positionings (L,R) and arrows with an angle of 0° (default) is noted,
as shown in scheme 2-2:

\begin{chemistry} [hori]
formula(L,R){ ring(){ 4: bond(r); 5: bond(r); } }
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arrow()

{ text(T,C){ formula(C,C){ atom("Br$_2$") }}
text (B,C){ formula(C,C){ atom("h$\nu$") }}

}

formula(L,R)

{ ring(O{ 4: bond(r) atom("CH$_2%$Br",L);
5: bond(r) atom("CH$_2$Br",L); }

}

arrow()
{ text(T,C){ formula(C,C){ atom("Na$_2$S") }}

text (B,C){ formula(C,C){ atom("CH$_3$CH$_28$0H") }}
}

formula(L,R)
{ ringO{
vertex("cpentane",4,1,H){ 4: atom("S"); };
}
}

arrow()

{ text(T,C){ formula(C,C){ atom("NaIO$_4$") }}
text(B,C){ formula(C,C){ atom("H$_2$0, 0 $ o$C") }}

}

formula(L,R)
{ ringO{
vertex("cpentane",4,1,H){ 4: atom("S") bond(r,=C) atom("0"); };
}
}
\end{chemistry}

(@( Br, CH2Br NasS NalOy
——QC » O » O
hy CHBr CHsCH,OH H,0, 0°C S0

Scheme 2-2 Horizontal reaction scheme: synthesis of a benzothiophene.

With this positioning, each formula is vertically aligned to a common center-line on
which the arrows lie. It is also possible to build the chains right-to-left, whereby the
positioning (R,L) is used and an angle of 180° for the arrows.

An extension of the formula syntax allows for the labeling of the compounds and is
especially appropriate for the setting of formula in horizontal chains. For this, you
must choose the type HA (horizontal, absolut distance) and specify the distance from
the text’s baseline to the center-line, as it is shown in scheme 2-3. The command
\shortstack provides the possibility of setting line breaks within the text:

\begin{chemistry} [hor2]
formula(L,R,"o-xylene" ,HA,36)
{ ring(O{ 4: bond(r); 5: bond(r); } }

arrow()
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{ text(T,C){ formula(C,C){ atom("Br$_2$") }}
text (B,C){ formula(C,C){ atom("h$\nu$") }}
}

formula(L,R,"$\alpha,\alpha’$-o-Xylene" ,HA,36)
{ ring(O{ 4: bond(r) atom("CH$_2$Br",L);

5: bond(r) atom("CH$_2$Br",L); }
}

arrow()
{ text(T,C){ formula(C,C){ atom("Na$_2$S") }}
text (B,C){ formula(C,C){ atom("CH$_3$CH$_28$0H") }}

}
formula(L,R,"\shortstack{dihydro-\\benzo[b]thiophenel}" ,HA,36)
{ ringO{
vertex("cpentane",4,1,H){ 4: atom("S"); };
}
}
\end{chemistry}
(@( Bry CH;Br NasS
—.— QC O
hv CH-Br CHgCHQOH
dihydro-
o-xylene a, a'-0-Xylene benzo|[b]thiophene

Scheme 2-3 Horizontal reaction scheme with compound labels which are aligned toward a common line under-
neath the reaction arrow (absolute distance of the text to the center-line).

For this method, it is necessary to estimate the required distance of the text to the
center line. Itis quite difficult to setan equal distance for several independent schemes.
This circumstance is taken into account with the command multiline, which is
especially designed for the setting of multi-line horizontal reaction chains. It deter-
mines in every line the lowest formula edge and observes a constant distance (of
size rTextSep) for calculating the height of the whole text line. All of the com-
pound labels in this line are equally aligned and hold an identical minimum dis-
tance rTextSep from the largest formula. With n = 1, you can solve the discussed
problem (scheme 2—4). It is to be noticed that formulae within multiline must not
have positioning parameter for the label (HR and similar ones) because these values
are automatically determined:

\begin{chemistry} [hor3]
multiline (1)
{ formula(L,R,"o-xylene")
{ ring(O{ 4: bond(r); 5: bond(r); } }

arrow()

{ text(T,C){ formula(C,C){ atom("Br$_2$") }}
text (B,C){ formula(C,C){ atom("h$\nu$") }}

}

formula(L,R,"$\alpha,\alpha’$-o-xylene")
{ ring(O{ 4: bond(r) atom("CH$_2%$Br",L);
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5: bond(r) atom("CH$_2$Br",L); }
}

arrow()
{ text(T,C){ formula(C,C){ atom("Na$_2$S") }}
text (B,C){ formula(C,C){ atom("CH$_3$CH$_28$0H") }}

}
formula(L,R,"\shortstack{dihydro-\\benzo[b]thiophenel}")
{ ringO{
vertex("cpentane",4,1,H){ 4: atom("S"); };
}
}
}
\end{chemistry}
(@A/ Brs CH;Br NasS
——QC » O3
hv CH-Br CHgCHQOH
dihydro-
o-xylene a, a'-0-Xylene benzo|[b]thiophene

Scheme 2-4 Horizontal reaction scheme with compound labels which are automatically aligned in a constant

distance on a common line underneath the reaction arrow.

To determine the correct distance of the texts from the center line, only those for-
mulae are used which are also labeled. Therefore, the case does not arise that a
very large intermediate (for example a vertically depicted mixture of isomers with-
out labeling) influences the height of the labels of the whole line, as you can see in

scheme 2-8.

2.3.2 Multi-line schemes

So far, only single reaction lines have been discussed. It is however possible to set
several such lines one above the other, whereby automatically a constant distance
rMultilineSep between each line pair is set (the possibility of labels is taken into

account), see scheme 2-5.

\begin{chemistry}[multlil]
set ("rArrowExtend",12)
multiline(2,L)
{ % line 1
formula(L,R,"naphthalene)
{ ring(, ,H0=2=4=){
vertex(,4,1,H3=5=){
};
}
}
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arrow(){ text(B,C){ formula(C,C){ atom("A1C1$_3$") } } }

formula(L,R,"Succinylnaphthalene")
{ ring(, ,H0=2=4=){
vertex(,4,1,H3=5=){
3: bond(r)
branch { bond(150,=C) atom("0");}
bond (30; -30; -90) atom("C",C,R) atom("OOH",L);
};
}
}

arrow()
{ text(T,C){ formula(C,C){ atom("ZnHg") } }
text(B,C){ formula(C,C){ atom("HC1") } } }

formula(L,R,"naphthyl-butanoic acid")
{ ring(, ,H0=2=4=){
vertex(,4,1,H3=5=){
3: bond(r; 30; -30; -90) atom("C",C,R) atom("OOH",L);
};
}
}

%line 2

arrow()

{ text(T,C){ formula(C,C){ atom("H$_3$P0$_4%$") } }
text(B,C){ formula(C,C){ atom("cyclization") } } }

formula(L,R)
{ ring(, ,H0=2=4=){
vertex(,4,1,H3=5=){
vertex(,3,0,H){
5: bond(r,=C) atom("0");
};
};
}
}

arrow()
{ text(T,C){ formula(C,C){ atom("ZnHg") } }
text (B,C){ formula(C,C){ atom("HC1") } } }

formula(L,R,"tetrahydrophenanthrene")
{ ring(, ,H0=2=4=){
vertex(,4,1,H3=5=){
vertex(,3,0,H){
};
};
}
}

arrow(){ text(T,C){ formula(C,C){ atom("DDQ") } } }
formula(L,R,"phenanthrene")

{ ring(, ,H0=2=4=){
vertex(,4,1,H3=5=){
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vertex(,3,0,H2=4=){

};
};
}
}

}

\end{chemistry}

0)

ZnHg
AlCl3 OO HCI OO
naphthalene Succinylnaphthalene naphthyl-butanoic acid
H PO4 Zan ‘ DDQ ‘
QI "0

cycllzatlon

tetrahydrophenanthrene phenanthrene

Scheme 2-5 Synthesis of phenanthrene, set in multiple lines with multiline.

In this way, you can break up a long reaction chain into several lines or set a croud of
independent, short chains one above the other. Furthermore, the command is used
to combine several single formula or bigger part of reactions. Examples are given in
section 2.3.5.

2.3.3  Vertical aligment

Reactions running from top to bottom can be as easily set as chains from left to right.
The main direction is set with the positioning (T,B), in rarer cases from bottom-to-
top with (B,T), as is demonstrated in scheme 26 (left). The arrows now turn down
with an angle of -90°:

\begin{chemistry}[vert1]
formula(T,B)
{ ringO{} }

arrow(-90)
{ text(T,C){ formula(C,C){ atom("Cl") bond(30)
branch{ bond(90,=C) atom("0"); }
bond (-30; 30) }}
text(B,C){ formula(C,C){ atom("A1C1$_3$") }}
}
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formula(T,B)
{ ring()
{ 4: bond(r) branch { bond(r+,=C) atom("0"); }
bond(r-; r); }
}

arrow(-90)
{ text(T,C){ formula(C,C){ atom("S/morpholine") }} }

formula(T,B)
{ ring()
{ 4: vond(r; r-; r) atom("COOH",L,R); }

}
\end{chemistry}

O

ﬂ\/ AICl3
Cl
S/morpholine

S/morpholine

[::T/\V/COOH

COOH
©/\/ 3-phenyl-
propanoic acid

Scheme 2-6 Vertical reaction scheme: synthesis of 7-Oxononanic acid. On the
right the same scheme with labeling of the compounds. All texts possesses a fixed
distance from the lower formula edges.

Again, the labeling of the formulae is possible, but the distance from the text’s base-
line to the lower formula edge must be noted (type V), because the horizontal center-
line does not exist. In this case also line breaks can be set within the BTEX command
\shortstack (scheme 2-6, right):

\begin{chemistry} [vert2]
formula(T,B,"Benzen",V,24)
{ ring(O{} }
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arrow(-90)

{ text(T,C){ formula(C,C){ atom("Cl") bond(30)
branch{ bond(90,=C) atom("0"); }
bond (-30; 30) }}

text (B,C){ formula(C,C){ atom("A1C1$_3$") }}
}

formula(T,B)
{ ring()
{ 4: bond(r) branch { bond(r+,=C) atom("0"); }
bond(r-; r); }
}

arrow(-90)
{ text(T,L){ formula(C,C){ atom("S/morpholine") }} }

formula(T,B,"\shortstack{3-phenyl-\\propanoic acid}",V,24)
{ ring()
{ 4: bond(r; r-; r) atom("COOH",L,R); }
}
\end{chemistry}

Up to this point, we assumed that the main direction of the chain is always the same
(left-to-right or top-to-bottom). This does not always have to be the case. It depends
on your preference to set the positioning parameters of a formula to (L,B), for ex-
ample. This changes the sequence at this point from left-to-right to top-to-bottom.

2.3.4  Context and branching

Itis now time to introduce the concept of contexts. Implicitly, we have already used
it with the drawing of the very first scheme. A context is nothing more than the
bounding box of a formula. It is applied to calculate the coordinates of the new and
most important points of the formula (which are the four corners, the centers of the
four edges and the center itself) with the help of the positioning parameters <pos>
and <Cpos>. Each formula command sets the current context to the bounding box
of the formula which was created by it.

The context can be made directly visible through the commands £box or bracket:
they use the actual context to frame the corresponding formula or to enclose it with
brackets.

An important characteristic of reaction chains which bases on the context, is the
branching. Starting from one and the same formula, we can create several chains.
The context and thereby the geometrical dimension of the formula is saved with the
command savecontext under a certain number. So this context can be repeatedly
recalled with setcontext, again using its identification number. This is necessary at
the beginning of each further reaction chain, because the context of the branching
formula will be overwritten by each following formula.

A simple branching of the reaction chain is given in the reference to the command
—setcontext in scheme 3-4. The reaction possibilities of a borane form an im-
pressive illustration for multiple branchings. As was the case with simple branching,
the context of the central formula which serves as branching point is stored only
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one time, because it does not change. In contrast to the simple case, however, it is
used several times in order to calculate (with the command setcontext)the starting
point of each following chain:

\begin{chemistry}[cont2]
formula(L,R)
{ atom("R") bond(30; -30,=) }

arrow()
{ text(T,L){ formula(C,C){ atom("H") bond(0) atom("B")
branch{bond (90; 30); bond(-30; 30);} }} }

formula(L,R,"Alkylborane" ,HR,24)
{ atom("R") bond(30; -30; 30)
atom("B")
branch{bond(90; 30); bond(-30; 30);}
}

savecontext (#1)

arrow()

{ text(T,L){ formula(C,C){ atom("R’>-CO0OD") }} }
formula(L,R)

{ atom("R") bond(30; -30; 30) atom("D") }

setcontext (#1,TR)

arrow(45)

{ text(T,L){ formula(C,C){ atom("AgN0$_3%$/0H$ \ominus$") }} }
formula(BL,R)

{ atom("R") bond(30; -30; 30; -30; 30) atom("R") }

setcontext (#1,BR)

arrow(-45)

{ text(T,L){ formula(C,C){ atom("H$_2$0$_2$/0H$ \ominus$") }} }
formula(TL,R)

{ atom("R") bond(30; -30; 30) atom("OH",L) }

setcontext (#1,B)

arrow(-90)

{ text(T,L){ formula(C,C){ atom("Br$_2$/0H$ \ominus$") }} }

formula(T,R)

{ atom("R") bond(30; -30; 30) atom("Br",L) }
\end{chemistry}

Other possibilities of branching, where several formulae build up a context, working
as a unit, will be discussed in the following section.

2.3.5 Parts of reactions as units

It may arise the wish to display an intermediate product with several mesomere
states vertically one above the other within one horizontally organized chain (see
scheme 2-8). The solution is to apply a multiline command with a small ver-
tically oriented scheme as single-line content. Thus, both border structures can be
regarded as a unity, which is centered by help of the positioning parameter L, R, be-
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R/A\V/A\V/R
AgNO3/OHe
H-é/v R-COOD
RS g RPN > R/\/D
Alkylborane
Br,/OH® H>0,/0H®
RBr
rR\OH

Scheme 2-7 What happens to the borane? Multiple branchings, derived from one
and the same formula, can show it. The context of the branching point, here the
borane, must be stored.

ing a “reaction chain”. The inner alignment becomes senseless in the case of single-
line content of the multiline command and can therefore freely be chosen. Ad-
ditionally, another multiline command was used for the complete reaction chain
to align the formula names:

\begin{chemistry} [multli2]
multiline (1)
{ formula(L,R,"benzene"){ ring(){} }

arrow()

{ text(T,L){ formula(C,C){ atom("Cl") bond(30)
branch{bond(90,=C) atom("0");} bond(-30) } }

}

multiline(1,C)
{ formula(T,B)
{ ring(, ,H0=2=)
{ 4: bond(30) branch{ bond(90,=C) atom("0");} bond(-30);
4: bond(b) atom("H");
5: bond(r,s,S) atom("$\oplus$"); }
}
arrow(-90, ,<=>){}
formula(T,B)
{ ring(, ,H2=5=)
{ 4: bond(30) branch{ bond(90,=C) atom("0");} bond(-30);
4: bond(b) atom("H");
1: bond(r,s,S) atom("$\oplus$"); }
};
}

arrow() {}
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formula(L,R,"acetylbenzene")

{ ring()
{ 4: bond(r) branch { bond(r+,=C) atom("0");} bond(r-); }
}
B
\end{chemistry}
H
T
Cl
S
benzene acetylbenzene
H

Scheme 2-8 An independent vertical scheme is set as a single-line multiline ob-
ject and can thus be inserted as a unity into the horizontal formula stream.

You can organize with this method horizontally aligned border structures as well as

reaction parts within vertically ordered chains. T,B must be used for positioning.
This has been applied for the mixture of different chloro-butenes in scheme 2-22.

2.3.6  Joining contexts

multiline may also be of help to you if you want to contract some formulae, i.e.
to achieve a bracketing of all participating formulae, as it is shown in scheme 2—
8. The command bracket, however, will only bracket the last drawn formula. A
single-linemultiline unity provides a super-context to the outside. This is a context
which includes all nested individual contexts. It offers the possibility to use it as a
reference to multiple formulae for branching or bracketing. Scheme 2-9 may serve
as a good example for the bracketing of two formulae:

\begin{schema}

\begin{chemistry} [mult1i3]
multiline (1)

{ formula(L,R,"benzene"){ ring(){} }

arrow()

{ text(T,L){ formula(C,C){ atom("Cl") bond(30)
branch{bond(90,=C) atom("0");} bond(-30) } }

}

multiline(1,C)
{ formula(T,B)
{ ring(, ,H0=2=)
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{ 4: bond(30) branch{ bond(90,=C) atom("0");} bond(-30);
4: bond(b) atom("H");
5: bond(r,s,S) atom("$\oplus$"); }
}
arrow(-90, ,<=>){}
formula(T,B)
{ ring(, ,H2=5=)
{ 4: bond(30) branch{ bond(90,=C) atom("0");} bond(-30);
4: bond(b) atom("H");
1: bond(r,s,S) atom("$\oplus$"); }
}
}
bracket ()
arrow(){}

formula(L,R,"acetylbenzene")
{ ring()
{ 4: bond(r) branch { bond(r+,=C) atom("0");} bond(r-); }
}
B
\end{chemistry}

o

QO —— —

benzene acetylbenzene

[

Scheme 2-9 A super-context, built up with multiline, permits to bracket all for-
mulae, contained in the super-context.

Besides the bracket command you can also build up multiple branchings, using
savecontext and setcontext. The super-context may serve as a base for these
commands as well as a normal context. Regardless of the super-context, you can
manipulate the single contexts, if these are stored within the multiline command,
as demonstrated by scheme 2-10:

\begin{chemistry}[multli4]
formula(L,R)
{ bond(-30,=) bond(30)
branch {bond(90,=C) atom("0");} bond(-30);
}

arrow()
{ text(T,C){ formula(C,C){ atom("+ H$ \oplus$") } } }
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multiline(1,C)
{ formula(T,B)
{ bond(-30,=; 30) branch{ bond(-90,s,S) atom("$\oplus$");
bond(90) atom("0",C,R) atom("H",L);
}
bond (-30)
}
savecontext (#1)
arrow(-90, ,<=>){}
formula(T,B)
{ atom("$\oplus$") bond(-90,s,S)
bond (-30; 30,=)
branch { bond(90) atom("0",C,R) atom("H",L); }
bond (-30)
}
savecontext (#2)
}
bracket ()

setcontext (#1,R)
arrow() {}
formula(L,R,"1,2-Addukt" ,HR,24)
{ bond(-30,=; 30)

branch{ bond(150) ;

bond (90,=C) atom("0");
}

bond (-30) atom("R")
}
setcontext (#2,R)
arrow() {}
formula(L,R,"1,4-Addukt" ,HR,24)
{ atom("R") bond(-90)

bond (-30; 30)

branch { bond(90,=C) atom("0"); } bond(-30)

}
\end{chemistry}
X N R
\\/ji\ + H® 1,2-Addukt
—
N
L LK
L > ]
1,4-Addukt

Scheme 2-10 Branchings can be applied to each single formula independently from
the super-context, if the contexts are stored separately.

The storage of the contexts of single formulae within multiline is important, if
multiline is used for the alignment of the formula titles and the formulae them-



2.3 — Reaction chains

selves are branching points, too. See the following example (scheme 2-11):

\begin{chemistry} [multli5]

multiline (1)

{ formula(L,R,"cinnamic acid")
{ ring(O{5: bond(r;r/,=;r) atom("COOH",L); } }
savecontext (#1)

arrow(){}

formula(L,R,"p-cumaric acid")

{ ring(O{5: bond(r;r/,=;r) atom("COOH",L);
2: bond(r) atom("HO",R); }

}

savecontext (#2)

arrow(){}
formula(L,R,"Kaffees\""aure")
{ ring(O{5: bond(r;r/,=;r) atom("COOH",L);
2: bond(r) atom("HO",R);
1: bond(r) atom("HO",R); }
}
s
setcontext (#1,B) arrow(-90){}
formula(T,B,"Cumarin",V,24)
{ ring(, ,H5=)
{ vertex(,1,1){};
3: atom("0");
4: bond(r,=C) atom("0"); }
}
setcontext (#2,TR) arrow(45){}
setcontext (#2,BR) arrow(-45){}
\end{chemistry}

HO HO
O — O, —
= >~COOH ~ ~COOH HO = ~COOH

cinnamic acid p-cumaric acid Kaffeesaure

0.0
QU

Cumarin

Scheme 2-11 With multiline aligned formula titles and branching, attained with individual contexts.
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For each formula which acts as a branching point, an individual context is stored.
Formula titles which were produced with multiline move into the context. In the
case of arrows pointing down, you will be rewarded with the correct connection
point.

Since the multiline block is regarded as a whole, positioning problems may arise
if a formula without a title should follow the multiline block. This formula’s cen-
terline would be set centered in relation to the whole preceding block, including
the titles:

HO

O, oy

HO =~ ~COOH m
HO

Kaffeesaure

multiline (1){
formula(L,R,"Kaffees\""aure"){
ring(O{
5: bond(r;r/,=;r) atom("COOH",L);
2: bond(r) atom("HO",R);
1: bond(r) atom("HO",R);
}
}
arrow(,12){}
}
formula(L,R){
ring(, ,H5=){
vertex(,1,1){
4: bond(r) atom("HO",R);
5: bond(r) atom("HO",R);
};
3: atom("0");
4: bond(r,=C) atom("0");
}
}

The solution is realized by storing the context of the last formula and setting it after
the closing of the multiline block:

HO HO 0._0
O oon — O
HO =~ >~COOH HO
Kaffeesaure

multiline (1){
formula(L,R,"Kaffees\""aure"){
ring (O {
5: bond(r;r/,=;r) atom("COOH",L);
2: bond(r) atom("HO",R);
1: bond(r) atom("HO",R);
}
}
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savecontext (#1)
}
setcontext (#1,R)
arrow(,12){}
formula(L,R){
ring(, ,H5=){
vertex(,1,1){
4: bond(r) atom("HO",R);
5: bond(r) atom("HO",R);
};
3: atom("0");
4: bond(r,=C) atom("0");
}
}

2.3.7  Merging of several branches

Reaction chains may be split up into several parts, but also quite often the opposite
is the case. The merging of several branches to a single one is often necessary, as in
the course of a convergent synthesis. You can choose either the command joinh or
joinv, depending on wether the branches should merge horizontally or vertically.

The synthesis of a crown-ether may serve as a demonstration for a horizontally aligned
merging:

\begin{chemistry}[joinh1]
joinh(2,L)
{ % linel
formula(L,R,"Bis-chloroethylether")
{ atom("C1l") bond(45; 0; -45)
atom("0") bond(45; 0; -45) atom("Cl")
}
arrow(){}
formula(L,R)
{ ring()
{ 5: bond(r) atom("OH",L);
4: bond(30) atom("0") bond(90; 30; -30)
atom("0")
bond (30; -30; -90) atom("0")
bond (-30)
ring(,2){ 1: bond(r) atom("HO",R); }; }
};

% line 2

formula(L,R,"2,6-Bishydroxymethyl-pyridin")

{ ring()

{ 0: atom("N");

1: bond(r; r+) atom("0",C,L) atom("H",R);
5: bond(r; r-) atom("0",C,R) atom("H",L); }

}

arrow(){}

formula(L,R)

{ ring()
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{ 0: atom("N");
1: bond(r; r+) atom("Br");
5: bond(r; r-) atom("Br"); }
};
}
arrow() {}

formula(L,R,"Dibenzopyridino [18]krone-6",HR,24)
{ ring()
{ 5: bond(-30) atom("0")
bond (-90; -30; 30) atom("0")
bond (-30; 30; 90) atom("0") bond(30);
4: bond(30) atom("0") bond(90; 30)
ring(,1)
{ 5: bond(-30; -90) atom("0") bond(-30)
ring(,2) {};
0: atom("N");
};
}
}
\end{chemistry}

> —ed ko .
SOIENG)
) o

H H Dibenzopyridino[18]krone-6

2,6-Bishydroxymethyl-pyridin

Scheme 2-12 The synthesis of a crown-ether as an example for the merging of two horizontal chains with joinh.

Multiple horizontal mergings are also possible, if you write additional (nested) joinh
commands into one or more branches of an outer joinh command (scheme 2-13):

\begin{chemistry}[joinhh]
joinh(2,R)
{ joinh(2,R)
{ formula(L,R,"aniline")
{ ring(O{ 4: bond(r) atom("N",C,R) atom("H$_2%",L);} }
formula(L,R,"nitrous acid")
{ atom("HNO$_2%") }
}
arrow () {}
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formula(L,R,"Diazoniumion")
{ ring(O{ 4: bond(r) atom("N",C,R) atom("$_2"+$",L);} }
formula(L,R,"aniline")
{ ring(O{ 5: bond(r) atom("N",C,R) atom("H$_2$",L);} }
}
arrow(){}
formula(L,R,"p-Amino-diazobenzen",HR,24)
{ ring(O{ 4: bond(r) atom("N=N",L,R) bond(xr/)
ring(,0,,,,r)
{ 3: bond(r) atom("N",C,R) atom("H$_2%",L);};
}
}
\end{chemistry}

o
aniline N (©/Néir -

HNO, — Diazoniumion

N=N
nitrous acid ) ©/ \©\
NH
p-Amino-diazobenzen
: NH-

aniline

2

Scheme 2-13 Horizontal merging of two horizontally merged reaction sequences.

In the same way you can combine vertical schemes. Scheme 2—14 displays this with
two nested joinv units:

\begin{chemistry}[joinvi]
set ("rArrowExtend",18)
joinv(2,B)
{ joinv(2,B)
{ formula(T,B)
{ bond(30,=; -30; 30)
branch { bond(150); bond(30) atom("0H",L); } bond(-30)
}
arrow(-90){ text(T,L){formula(C,C){atom("HBr")}}}
formula(T,B)
{ atom("Br") bond(30; -30; 30,=)
branch { bond(90); } bond(-30)
};



54

Chapter 2 — Tutorial

formula(T,B,"tosylchloride",V,24)
{ ring(O{ 2: bond(r); 5: bond(r) atom("S0$_2$C1",L); 2}
}
arrow (-90)
{ text(T,L){formula(C,C){atom("NaOH")}}
text (B,L){formula(C,C){atom("Zn")}}
}
formula(T,B)
{ ring(O{ 2: bond(r); 5: bond(r) atom("SO0$_2$Na",L); }
};
}
arrow (-90){} % 80%

formula(T,B)
{ ring(O{ 2: bond(r);
5: bond(r) atom("S0$_2$",L,R) bond(30; -30; 30,=)
branch{bond (90) ;} bond(-30); }
};

formula(T,B,"3-methylbutanoic acid",V,24)
{ bond(30) branch{ bond(90); } bond(-30,=; 30) atom("COOH",L)
}
arrow(-90){ text(T,L){formula(C,C){atom("CH$_3$0H")}}}
formula(T,B)
{ bond(30) branch{ bond(90); } bond(-30,=; 30) atom("CO$_2$CH$_3$",L)
};
}

arrow(-90){ text(T,L){formula(C,C){atom("NaOCH$_3$")}}}

formula(T,B)
{ ring()
{ 3: bond(r);
0: bond(r) atom("S")
branch { bond(180,=C) atom("0");
bond (0,=C) atom("0"); }
bond (-90)
saveXY (#1)
bond (-150) bond (150,=)
branch { bond(-150); bond(90); }

restoreXY (#1)

bond (-30) branch { bond(-150);
bond (-30); }

bond (30)

branch{ bond(90,s,S) atom("$\ominus$"); }
bond (-30) atom("CO$_2$CH$_3%$",L);
}
}
bracket ()

arrow(-90,10){}
arrow(-90,10){ text(T,L){formula(C,C){atom("KOH")}}}

formula(T,B,"\textit{trans}-chrysanthemum acid",V,24)
{ ring(,,H,,3,90)
{ 1: bond(r,<.) atom("COOH",L);
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2: bond(150,<<) bond(-150,=) branch{ bond(-90); bond(150); };
0: bond(t);
0: bond(b);
}
}
\end{chemistry}

If needed, you can also nest horizontally merging sequences into vertically merg-
ing chains and vice versa. An example is scheme 2—15, which shows a horizontal
scheme, containing a vertical sequence:

joinh(2,R)
{ joinv(2,B)
{ formula(T,B,"aniline",V,24)
{ ring(O{ 4: bond(r) atom("N",C,R) atom("H$_2%",L);} }
formula(T,B,"nitrous acid",V,24)
{ atom("HNO$_2$") }
}
arrow(-90,12,-){} nospace arrow(){}
formula(L,R,"Diazoniumion")
{ ring(O{ 4: bond(r) atom("N",C,R) atom("$_2"+$",L);} }

formula(L,R)
{ ring(){ 5: bond(r) atom("N",C,R) atom("H$_2$",L);} }
}
arrow() {}
formula(L,R,"p-Amino-diazobenzen",HR,24)
{ ring(O{ 4: bond(r) atom("N=N",L,R) bond(xr/)
ring(,0,,,,r)
{ 3: bond(r) atom("N",C,R) atom("H$_2%",L);};

The counterpart with juxtaposed roles is a vertical scheme with a horizontal part, as
scheme 2—16 shows:

\begin{chemistry}[joinvh]
joinv(2,T)
{ joinh(2,L)
{ formula(L,R,"aniline")
{ ring(O{ 4: bond(r) atom("N",C,R) atom("H$_2$",L);} }
formula(L,R,"nitrous acid")
{ atom("HNO$_2%") }
}
arrow(,12,-){} nospace arrow(-90){}
formula(T,B,"Diazoniumion",V,24)
{ ring(O{ 4: bond(r) atom("N",C,R) atom("$_2"+$",L);} }

formula(T,B,"aniline",V,24)
{ ring(O{ 5: bond(r) atom("N",C,R) atom("H$_2$",L);} }

)
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Scheme 2-14 Synthesis of Chrysanthemums”aure, arranged with joinv.
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NH,
©/ HNO,

aniline nitrous acid

— O
Diazoniumion N=N
e
NH
@\ p-Amino-diazobenzen
NH,

Scheme 2-15 Synthesis of a diazo compound. Mixed horizontal and vertical merging.

2

}

arrow(-90) {}

formula(T,B,"p-Amino-diazobenzen",V,24)

{ ring(){ 4: bond(r) atom("N=N",L,R) bond(r/)
ring(,0,,,,r)
{ 3: bond(r) atom("N",C,R) atom("H$_2$",L);};

}
}
\end{chemistry}

2.3.8  Mixing of basic elements

It is possible to mix the various methods for the setting of complex formula units
(multi-line blocks and merging), which have been introduced so far. The homoge-
neous mixture of the merging has already been discussed. In the following lines, we
depict the way in which a merging will be embedded at the beginning of a single-
line multiline body (scheme 2-17):

\begin{chemistry}[joinhml]
multiline (1)
{ joinh(2,L)
{ formula(L,R,"aniline")
{ ring(O{ 4: bond(r) atom("N",C,R) atom("H$_2%",L);} }
formula(L,R,"nitrous acid")
{ atom("HNO$_2$") }
}

arrow () {}
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@NH2 ] ©\NH2

aniline aniline

HNO, —

) : N
nitrous acid ©/ 2

Diazoniumion

o Q.

p-Amino-diazobenzen

2

Scheme 2-16 Mixed joinv/joinh commands.
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formula(L,R,"Diazoniumion")
{ ring(O{ 4: bond(r) atom("N",C,R) atom("$_2"+$",L);} }

arrow()
{ text(T,L){formula(L,R)
{ ring(O{ 5: bond(r) atom("N",C,R) atom("H$_2$",L);} } } }

formula(L,R,"\shortstack{p-Amino-\\ diazobenzen}")

{ ring(O{ 4: bond(r) atom("N=N",L,R) bond(xr/)
ring(,0,,,,r)
{ 3: bond(r) atom("N",C,R) atom("H$_2%",L);};

}
\end{chemistry}

More lines can be added to the multiline environment if necessary.

@N“2 _
P o0,

+
aniline 4’ ©/N2
p-Amino-

HNO, — Diazoniumion diazobenzen

2

nitrous acid

Scheme 2-17 Merging of horizontal reaction sequences with multiline.

2.4  Cyclohexane and carbohydrates

In literature, we find different representations of carbohydrates. Structural formulae
following FISCHER's representation may be set with atom, the branchings to the left
and right are constructed with the command branch:

formula(L,R,"D-arabinose" ,HR,24){

HO branch { atom("C",C,R) atom("HO",L); } bond(-90)
HO—C—H branch { bond(180) atom("HO",R); bond(0) atom("H",L); }
H—C—OH atom("C",C,C) bond(-90)

branch { bond(180) atom("H",R); bond(0) atom("OH",L); }
atom("C",C,C) bond(-90)

branch { bond(180) atom("H",R); bond(0) atom("OH",L); }
atom("C",C,C) bond(-90)

D-arabinose atom("C",C,R) atom("H$_2$0H",L)

H—C—OH
H2OH
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In the case of frequent use of such formulae a macro may appear helpful, for exam-
ple:
\begin{chemspecial}
define(‘TOP_’, ‘branch { atom("C",C,R) atom("$1",L); } bond(-90)’)
define(‘MID_’, ‘branch { bond(180) atom("$1",R);
bond(0) atom("$2",L); }
atom("C",C,C) bond(-90) ’)
define (‘BOTTOM_’, ‘atom("C",C,R) atom("$1",L); °’)
\end{chemspecial}
\begin{chemistry}
formula(L,R,"D-arabinose",HR,24)
{ TOP_(‘HOD’)
MID_(‘HO’, ‘H’)
MID_(‘H’, ‘0H’)
MID_(‘H’, ‘0H’)
BOTTOM_ (‘H$_2$0H’)
}
\end{chemistry}
A schematic three-dimensional delineation according to HAYWORTH can be at-
tained with the ring type furanose, maybe with the additional notification of a
bonding list to reinforce the perspective bondings:
formula(C,C,"$\beta$-D-xylose" ,HR,24){
HO 0 ring("furanose",0,,L){
0: atom("0");
H 1: bond(90) atom("0",C,R) atom("H",L);
2: bond(-90) atom("0",C,R) atom("H",L);
H 3: bond(90) atom("0",C,R) atom("H",L);
4: bond(90;180) atom("0",C,L) atom("H",R);
B-D-xylose }
}
formula(C,C,"$\beta$-D-xylose" ,HR,24){
HO 0 ring("furanose",0,1<<2b3>>,L){
0: atom("0");
H 1: bond(90) atom("0",C,R) atom("H",L);
2: bond(-90) atom("0",C,R) atom("H",L);
H 3: bond(90) atom("0",C,R) atom("H",L);
4: bond(90;180) atom("0",C,L) atom("H",R);
B-D-xylose }

}

Within the ring, the representation of vic-hydroxyl groups in the cis position may
become problematic. The hydrogen symbol can however be shifted nearer to the
oxygen symbol with the help of TEX commands. To avoid the covering of parts of
the “O”, the deleting of the background has to be put off until the “H” is set:
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formula(C,C,"$\beta$-D-1lyxose" ,HR,24){
ring("furanose",0,,L){
HO (0] H 0: atom("0");
1: bond(90) atom("0",C,R) atom("H",L);
2: bond(90) atom("0",C,L) atom("H\kern-.2em",R,,0);
3: bond(90) atom("0",C,R) atom('"\kern-.2emH",L,,0);
4

D : bond(90;180) atom("0",C,L) atom("H",R);
B-D-lyxose

Furanose rings can be combined in the same way as it is done with normal rings to
build up oligosaccharides. In the following example, the bondig type ~ is used to
denote an anomere:

formula(C,C,
"D-xylofuranosyl-(1$\to$4)-$\alpha$-D-arabinose" ,HR,24){
ring ("furanose",0,1<<2b3>>,L) {
0: atom("0");
1: bond(0,~) atom("0",C,C) bond(0;-90)
HO 0 ring("furanose",4,1<<2b3>>,L){
H 0 0 0: atom("0");
H 1: bond(-90) atom("0",C,R) atom("H",L);
H H 2: bond(90) atom("0",C,L) atom("H",R);
H 3: bond(-90) atom("0",C,R) atom("H",L);

[}

D-xylofuranosyl-(1—4)-a-D-arabinose bond(-90) atom("0",C.R) atom("H",L);

bond (90) atom("0",C,R) atom("H",L);
bond (90;180) atom("0",C,L) atom("H",R);

B W N e

Pyranoses also can be delineated following the HAYWORTH method. For this, there
is no special ring type required. A normal big six-membered ring can be utilized,
perhaps with a bonding list to strengthen the three-dimensional impression:

formula(L,R,"$\alpha$-D-glucopyranose" ,HR,24){

H,OH ring(, ,H,L,,0){

0 5: atom("0");
0: bond(-90) atom("0",C,R) atom("H",L);
H H H 1: bond(-90) atom("0",C,R) atom("H",L);
2: bond(90) atom("0",C,R) atom("H",L);
H 3: bond(-90) atom("0",C,L) atom("H",R);

4: bond(90) atom("C",C,R) atom("H$_28$0H",L);
a-D-glucopyranose ¥
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H,OH
Q
H
H H
H

a-D-glucopyranose

Q
OH
H

0 OH

H H
OH

HO 0

HO

formula(L,R,"$\alpha$-D-glucopyranose" ,HR,24){
ring(, ,H0<<1b2>>,L,,0){
5: atom("0");

bond (-90) atom("0",C,R) atom("H",L);

bond (-90) atom("0",C,R) atom("H",L);

bond (90) atom("0",C,R) atom("H",L);

bond (-90) atom("0",C,L) atom("H",R);

bond (90) atom("C",C,R) atom("H$_28$0H",L);

B W NN = O

}
}

Wild lines provide the possibility to describe derivations of carbohydrates, as is the
case with 1,2-3,4-di-O-sec-butyliden-3-D-arabino-pentopyranose:

formula(L,R){
ring(, ,HOt1t2t,L,,0){
5: atom("0");
1: bond(90) atom("0") saveXY(#1);
0: bond(90) atom("0") bond(20,,L)
branch{bond (-30) ; bond(90);} bond(#1);
2: bond(-90) atom("0") saveXY(#2);
3: bond(-90) atom("0") bond(-120,,L)
branch{bond (150); bond(-90);} bond (#2);
}
}

For a more detailed depiction of steric properties of the pyranoses, the ring type
chair may be used. It shows a cyclo hexane ring in stereo delineation (in chair
conformation). The symbolic angles t and b for axial and equitorial substituents
prove helpful. For spatial reasons, the hydroxyle group at position 5 must be turned
20° from the normal t position:

formula(L,R){
ring("chair",,,L,-1){

0: bond(b) atom("0",C,L) atom("H",R);
bond (20+t) atom("0",C,L) atom("H",R);
bond(b) atom("0",C,R) atom("H",L);
bond(b) atom("0",C,R) atom("H",L);
atom("0");
bond(t; t-) atom("OH",L);

=N W s o

formula(L,R){
ring("chair",,,L){
0: bond(b) atom("HO",R);
bond(t) atom("HO",R);
bond(b) atom("0",C,L) atom("H",R);
bond(b) atom("0",C,R) atom("H",L);
atom("0");
bond(t; t-) atom("0H",L);

=N W s o

}
}

The cyclohexane was constructed in such a way that the 1—6 glycosid bonds of
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di- and polycarbohydrates should be drawn twice as long as normal with a bond
command (length NN). Alternatively, the more common case is that you will place an
ether oxygen between the two rings. This can be done by drawing a normal bond,
followed by an oxygen and another bond. The second ring is set on the same height
as the first one, so that oligo-saccharides are horizontally aligned:

formula(L,R){
ring("chair",,,L){
0 0 2: atom("0");
\§§<::/:§§v//o///\§§::;,§§\ 3: bond(t,,L) atom("0") bond(t,,L)
ring("chair",,,L){ 2: atom("0"); };
}
}

Because the chair conformation is symmetrical, several rings may be joined together
to delineate, for example, a steroid structure three-dimensionally. For the five-membered
D ring, a wild bonding line must be drawn:

formula(L,R,"3-$\alpha$-Hydroxysteran" ,HR,24){
ring("chair",,,L,-1){
0: bond(b) atom("0",C,L) atom("H",R);
vertex("chair",3,0,3-4-5-,-1){
vertex('"chair",2,5,3-4-5-,-1){
3: bond(b,,L) saveXY(#1);
H 4: bond(t,,L; -tl|,,L; #1);

3-a-Hydroxysteran };

formula(L,R,"3-$\beta$-Hydroxysteran" ,HR,24){
ring("chair",,,L,-1){
0: bond(t) atom("0",C,L) atom("H",R);

vertex('"chair",3,0,3-4-5-,-1){
\Jé;::::;ZZ:::;fé;:::ZZZ:::] vertex("chair",2,5,3-4-5-,-1){
HO 3: bond(b,,L) saveXY(#1);
4: bond(t,,L; -tl|,,L; #1);
3-8-Hydroxysteran };

In the case of valeranee, the melting of two ring edges with a usually different length
turns out to be disharmonious:
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formula(L,R){
ring(, ,H){
vertex(,4,1,H){
1: bond(-90,0);
2: bond(90,0);
5: bond(r,t) branch { bond(r+); bond(r-); };
};
}
S

formula(L,R,"valerane" ,HR,24){
ring("chair",,,,-1){
Valeran 3: bond(b);
vertex("chair",3,0,5p) {
4: bond(0) branch{bond(0++); bond(0+-);}; };
4: bond(-90);
}

The appearance of the formula is manually a little bit improved by the following
method which mimicks the ring system B:

formula(L,R,"valerane" ,HR,24){
ring("chair",,,L,-1){
3: bond(b);
~ 4: saveXY(#1);

3: bond(t; 30; -120)
saveXY(#2) bond(-90,p; #1)
restoreXY(#2) bond(0) branch{bond(0++); bond(0+-);};

Valeran 4: bond(-90); }

The flexible parameter of the cyclohexane structure offers the opportunity to choose
between the possible main conformeres. Scheme 2—18 explains thereby the process
of an elimination reaction:

\begin{chemistry} [conf]

formula(L,R,"3-Menthyltosylat" ,HA,36)

{ ring("chair",,,L,-1)

{ 0: bond(t) branch{ bond(t-); bond(t+);} ;
0: bond(b) atom("H");

bond (130,,L) atom("0",C,R) atom("Tos",L);
bond(b) atom("H");
bond(t) atom("H",L);
bond(b); }

w b o,

}
arrow(, ,<=>){}

formula(L,BR)
{ ring("chair",,,L)
{ 0: bond(t) branch{ bond(t+); bond(t-);} ;
0: bond(b) atom("H");
bond(t) atom("H");
bond (b) ;
bond (b) atom("0",C,R) atom("Tos",L);

a w N
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5: bond(t) atom("H"); }
}

savecontext (#1)

arrow(-45,,-1>){}

formula(TL,C,"p-Menth-3-en" ,HA,54)

{ ring(, ,H5=){ 0: bond(r) branch { bond(r-); bond(r+); };
3: bond(r,<.); }

}

setcontext (#1,BL)
arrow(-135,,->){ text(T,L){ formula(C,C){atom("E$_2$") } } }
formula(TR,C,"p-Menth-2-en" ,HA,54)
{ ring(,,H4=){ 0: bond(r) branch { bond(r-); bond(r+); };
3: bond(r,<.); }
}
\end{chemistry}

OTos H
—k H
H ~——"
H

3-Menthyltosylat

Tos

=)

p-Menth-2-en p-Menth-3-en

Scheme 2-18 The balance between the two main conformeres of cyclohexane uses
the various representations of the same ring type.

2.5 Modification of parameters

As an example, the main reaction process in scheme 2—19 should be emphasized
by thickened lines. The solution shows how the code for this technique is nested
into a save/restore command pair. Within this, we change the parameter $rLW,
which is responsible for the line width. The branching minor process must not be
noted within the grouping:

\begin{chemistry} [parami]
save (#1)
set ("rLW", 1.5)
formula(L,BR)
{ ring(){ 3: bond(r) atom("0",C,R) atom("H",L); } }
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savecontext (#1)
arrow(-45){}
formula(L,R)
{ ring(O{ 3: bond(r) atom("0",C,R) atom("H",L);
0: bond(r) atom("N=N",L,R) bond(0)
ring(,3,,,,r){}; }
}

restore (#1)

setcontext (#1,BL)
arrow(-135){}
formula(R,R)
{ ring(O{ 3: bond(r) atom("0",C,R) atom("H",L);
4: bond(r) atom("N",C,R) atom("=N",L,R) bond(0)
ring(,3,,,,r){}; }
}
\end{chemistry}

Scheme 2-19 Main reactions can be separated from minor reactions by a thicker
line. The line width can be choosen by the command set.

If you wish to multiply all parameters by the same factor, you can apply —scale
instead of multiple set commands.

2.6  Depiction of electrons

An essential part of mechanistical formula representations is the rendering of the
electronic configuration and the movement of electrons.

2.6.1  Configurations of electrons

The depiction of electronic configurations in regard to an atom is not really a part
of OCHEM. But it can be achieved with the BTgX package echem.sty, which is
included in the OCHEM distribution. It includes two macros, \vd{<Atom>} and
\vdd{<Atom>}, which set beside the atom one or two electrons vertically one above
the other. The electrons are symbolized by points. The atom symbol is only used to
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«Li, Lie, Be, Bes, B
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determine the space around which the electrons should be positioned. The atom
itself will not be drawn and it must (as the examples demonstrate) follow after the
macro. Depending on the arrangement of the atom and the macros, the electrons
will be set before or after the atom symbol:

\vd{Li}Li,
Li\vd{Li},
\vdd{Be}Be,
Be\vdd{Be},
\vdd{B}B\vd{B}

For a horizontal arrangement, we can exploit four macros. Macros for electrons
above the atom symbol are \hdu{<Atom>} and \hddu{<Atom>}, macros for elec-
trons below the atom symbol are \hd1{<Atom>} and \hdd1{<Atom>}:

\hdu{Li}Li,
\hd1{Li}Li,
\hddu{C}\hdd1{C}C

To include these into an OCHEM formula, the package must be loaded with an ex-
plicit package command into a chemspecial environment and into the document
itself:

\usepackage{ochem,echem}
\begin{chemspecial}
package ("echem")
\end{chemspecial}

\begin{chemistry}[elekt]
formula(L,R)
{
bond (30;-30;30)
branch { bond(90,=C)
atom("\vdd{0}0\vdd{0}");
}
bond (-30;30;-30)
atom("\hdl[\echhbar]{0}\hdu[\echhbar]{0}0",L,R)
bond (30;-30)
}
\end{chemistry}

2.6.2 Movements of electrons

An important detail arises in the case of mechanistical depictions. Little arrows within
formulae or formula schemes are used to illustrate the shifts of electrons. Of course,
this is almost an application for special CAD programs, but | tried to implement
a useful command for precisely these electron movements. The matter is a little
bit complicated, because the start and destination point cannot be linked just by a
straight line. Therefore we need a bunch of parameters to describe the arc. The
base for the shift arrow is a cubic spline, which is described firstly by the start and
destination point, secondly by the angles, produced by the tangents at these two
points, and lastly by two control points. The angles of inflection resp. reflection are
in the most cases known so that chiefly the control points (that is, their distance from
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the destination points) determine the bending of the arc. However, a good portion
of experience and skillfullness is necessary to avoid a sense of despair because the
arc gets always awkwardly bent.

The destination points of shifts are mostly placed in the center of bonds. This poses
the problem that the bonds themselves should be drawn in their full length. To
store this central position, beginning from the start point of the bond, we can apply
saveXY with its extended syntax, i. e. angle and length. This syntax makes it possible
to save the coordinates of a point which would be reached if a bond of a specified
angle and length was drawn from the current position. The current position, how-
ever, is not changed so that the saveXY command may be followed directly by a
bond command. Due to the central position, small caps (n) are used quite often
with saveXY. The example illustrates the way in which a central position including
the bond is stored and drawn:

saveXY(#1,30,n) 7 angle 30 degree, half the normal length
bond (30) % angle 30 degree, normal length

The stored points are indicated by numbers. These serve as parameters for emove.
Start and destination point may or may not appear not within one formula. More
decisive is at any rate the actual point which is stored under the relevant number.
So the saveXY commands should be continually numbered.

Take for example the chain-extending step of isoprenoid biosynthesis in scheme 2—
20. Four points are saved in regard to an intramolecular transition and an inter-
molecular electron shift:

\begin{chemistry}

formula(L,R)

{ bond(30) branch { bond(90); } bond(-30,=; 30)
saveXY(#2,-30,n) bond(-30)
atom("0",L,R) saveXY(#4,0,n) bond(0) atom("PO(OH)$_2%$",L)

}

emove (#2,-150,20,#4,-90,20)

space(R)

formula(L,R)

{ saveXY(#3,30,n)
bond (30,=) branch { bond(90);} bond(-30; 30; -30)
atom("0OPO(OH)$_2$",L)

}

emove (#3,150,20,#2,30,20)

arrow () {}

formula(L,R)
{ bond(30) branch { bond(90); } bond(-30,=; 30; -30; 30)
branch { bond(90); }
bond (-30,=; 30; -30) atom("OPO(OH)$_2%",L)
}
\end{chemistry}

Another instance is exemplified by the Friedel-Crafts-acylation shown by scheme 2—
21. In this case also we find intra- and intermolecular movements. The shiftXY
commands help to position the three reactands in the correct relative location. The
following reaction arrow is nested into the body of multiline and can thereby be
directed at this formula triplet as a whole:
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//L5/?i§§§3;5&5;;;\fzi\¢/\\Opo(oH)2 » /lQV/\\/lQV/\\Opo(OH)Q

Scheme 2-20 The chain-extending step of the biosynthesis of isoprenoids is demonstrated by electron shifts.

multiline (1)
{ formula(C,C)
{ ring(,,H1=3=5=){ 3: saveXY(#1,-30,n); }
}
shiftXY(50,30)
formula(C,C)
{ bond(30) saveXY(#2)
branch { bond(90,=C) atom("0"); }
saveXY(#3,-30,n) bond(-30) atom("Cl");
}
shiftXY(0,-30)
formula(C,C)
{ saveXY(#4) atom("Al")
branch{ bond(-45,,L) atom("Cl");
bond(-90,,L) atom("Cl");
bond(-135,,L) atom("Cl1"); }
}
emove (#1,80,10,#2,150,15)
emove (#3,-120,10,#4,90,10)

3

}
arrow() {}

formula(L,R)
{ ring(, ,H1=5=)
{ 1: saveXY(#5,90,n);
3: saveXY(#6) bond(90,s,n) atom("$\oplus$");
4: bond(r) branch{ bond(r+,=C) atom("0"); }
bond (x-) ;
4: bond(t) atom("H");
}
}
emove (#5,0,10,#6,-90,10)
bracket ([)

arrow(0,10,<->){}

/_/‘%C' S
O ©

Scheme 2-21 The electron movement illustrated the process of the Friedel-Crafts-
acylation of an aromate.
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2.7  Cutting off bonds

and molecule parts

COOH

polymer

An essential part of mechanistical formula representations is the rendering of the
electronic configuration and the movement of electrons.

In a simple case, you just want to cut a bond to show only the interesting part of
the molecule and indicate that there are more atoms which should not be shown.
For this, you simply draw the bond (usually, this is done with half the length of a
standard bond) and add another bond command with the bond type |. This type
draws a cut-off line after the already drawn bond. The length of this line can be
varied by using the length parameter of the bond command:

formula(L,R) {
ring(, ,H){
2: bond(r,,n) bond(r,|);
4: bond(r,,n) bond(r,|,L);
}
}

This method works fine if you want to cut off several independent bonds. But an-
other common case is to cut off bigger parts of the molecule which are connected
by two bonds to the visible part. Here, you use the command cutline, which also
draws a cut-off line, but connects two given positions with this line. As an example,
the right ring of naphthalene is cut off by this code:

formula(L,R) {
ring(, ,H){
4: bond(r,,n) saveXY(#1);
5: bond(r,,n) cutline(#1,#cur);
}
}

The optional parameter of —cutline allows you to specify the length by which the
cut-off line extends the given positions as well as the line type.

The presented commands can not only be utilized to cut off molecule parts, but also
to draw backbones of bigger molecules which should only be symbolized without
concrete chemical structure, as i. e. in polymer backbones:

formula(L,R) {
atom("polymer",C,T)
bond (90, ~,LL)
branch {
bond (0) atom("COOH",L);
}
bond (90, ~,L)
}

The positioning possibilities offered by the saveXY and restoreXY commands allow
you to draw backbones with several groups attached to the backbone:
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formula(L,R) {

HO saveXY (#0)

saveXY (#1,=#0)

saveXY (#2,=#0+3*{0,N})
saveXY (#3,=#0+6%{0,N})
saveXY (#4,=#0+9*{0,N})
cutline (#1,#4,L)

HO COO0—A|
restoreXY(#1) bond(180) atom("HO",R)
restoreXY(#4) bond(180) atom("HO",R)

2.8

restoreXY (#2) bond(180) atom("0") saveXY(i#5)
restoreXY(#3) bond(180) atom("0")

HO bond (=0.5% (#5-#cur)-{L,0})

Examples

atom("Al") branch { bond(#5); }
bond (180) atom("C00",R,L) bond(-150)
ring(,4,H3=5=,,,r){
vertex(,1,4,H0=2=4=){};
}
}

2.8.1

Nylon synthesis

At this stage, all elements usable in formulae are now familiar to you. Many of them
are combined in the following section to describe two complete and fairly complex
reaction schemes.

Scheme 2-22 shows how the precursors of the nylon/perlon synthesis are prepared
from simple compounds. The basic idea is to find a very long sequence of formu-
lae and arrows which can be described easily and which minimizes the number
of branches required. This can help you to keep the overview. Another attempt
may be to summarize consecutive reaction chains due to chemical aspects. In the
present example, this is not possible due to the existence of two start points: one
chain starts from benzene, the other from butadiene. It would not be possible to
lead both threads to a common formula in the arrangement shown here (with joinh
or joinv this could be achieved, but would require a repositioning of the whole
scheme).

The main line here starts from benzene and ends at butadiene — but stop, do not
run the last two steps into the wrong direction? Not from the compiler’s view which
ignores the geometric representation of the elements. Reaction sequences against
the direction are simply described with the arrow type <- instead of ->!

The changes of directions occuring in the main line are properly described by suit-
able positioning parameters of the formula commands and the appropriate angles
of arrows.

The chlorination of butadiene yields a mixture of two dichlorbutenes, being cen-
tered to the vertical axis of the reaction sequence with a single-linemultiline block.
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The plus sign is a hidden “formula”, containing only the text “+”. The name, which
should be written centered below both formulae, can be produced with the help of
an empty formula, only containing the name.

The main line is described as follows:

\begin{chemistry}[nylon]
formula(L,R,"benzene" ,HR,24){ ring(){} }

arrow()

{ text(T,C){ formula(C,C){ atom("H$_2$/Pt, A1$_2$0$_3%$") } }
text (B,C){ formula(C,C){ atom("36 bar") } }

}

formula(L,R){ ring(, ,H){} }
savecontext (#1)

arrow(,36)

{ text(T,C){ formula(C,C){ atom("0$_2%") } }
text(B,C){ formula(C,C){ atom("Co(0Ac)$_3$") } }

}

formula(L,B)

{ atom("HOOC",L,R) bond(30;-30;30;-30;30;-30)
atom("COOH", L)

}

fbox

arrow(-90)

{ text(T,C){ formula(C,C){ atom("$\Delta$") } }
text(B,C){ formula(C,C){ atom("NH$_3$") } }

}

formula(T,B)
{ atom("H$_2$NCO",L,R) bond(30;-30;30;-30;30;-30) atom("CONH$_2$", L) }

arrow(-90) {}

formula(T,B)
{ atom("NC",L,R) bond(30;-30;30;-30;30;-30) atom("CN", L) }

arrow(-90)

{ text(T,C){ formula(C,C){ atom("H$_2%$/Ni") } }
text(B,C){ formula(C,C){ atom("130 $"o$C, 240 bar") } }

}

formula(T,L)
{ atom("H$_2$N",L,R) bond(30;-30;30;-30;30;-30) atom("NH$_2%", L) }
fbox savecontext (#2)

arrow(180,,<-){} nospace

arrow(-90, ,-)

{ text(T,C){ formula(C,C){ atom("NH$_33%$") } }
text (B,C){ formula(C,C){ atom("H$_2$/Kat") } }

}

formula(T,B)
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{ atom("NC",L,R) bond(30;-30;30,=;-30;30;-30) atom("CN", L) }

arrow(-90,,<-)

{ text(T,C){ formula(C,C){ atom("CuCN") } }
text(B,C){ formula(C,C){ atom("CN$ \ominus$") } }

}

multiline(1,C,T,B)
{ formula(L,R)
{ atom("C1") bond(30;-30;30,=;-30;30) atom("C1l")
}
formula(L,R){atom("+") }
formula(L,R)
{ bond(30,=;-30) branch { bond(-90) atom("C1l"); }
bond (30;-30) atom("C1")
};
}
formula(T,B,"chlorobuten",V,12){}

arrow(-90,,<-)
{ text(T,C){ formula(C,C){ atom("C1$_2$") } } }

formula(T,B,"butadiene",V,24)
{ bond(30,=; -30; 30,=) }

Through the use of a main process we have two branches which lead to the end
products and possess no specialities:

setcontext (#1,B)

arrow(-90)

{ text(T,C){ formula(C,C){ atom("NOC1") } }
text(B,C){ formula(C,C){ atom("HC1") } }

}

formula(T,B, "cyclohexanonoxime",V,24)
{ ring(,,H){ 4: bond(r,=C) atom("NOH",L); } 1}

arrow(-90)
{ text(T,C){ formula(C,C){ atom("H$_2$S0$_4%$") } } 1}

formula(T,B,"$\epsilon$-Caprolactam",V,24)
{ ring(, ,H,,7,90)
{ 0: atom("N") bond(r) atom("H");
1: bond(r,=C) atom("0"); }
}
fbox

arrow(-90){}
formula(T,B){ atom("Nylon 6") }

setcontext (#2,B)

arrow(-90)

{ text(T,C){ formula(C,C){ atom("270$"0%C") } }
text(B,C){ formula(C,C){ atom("10 bar") } }

}
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formula(T,B){ atom("Polyamid 66") }
\end{chemistry}

2.8.2  Terpene biosynthesis

The biosynthesis of the main representatives of bicyclic monoterpenes is another
complex instance, which is depicted in scheme 2-23. It contains branches, various
ring compounds and bold set formulae.

save (#1) % save parameter
formula(L,R){
bond (30) saveXY(#1) bond(90,=; 150)
bond (90; 30) saveXY(#2) bond(-30,=)
bond (-90; -45,s,n) atom("$\oplus$")
restoreXY(#1) bond(-30) restoreXY(#2) bond(90)
}

arrow() {}

formula(L,R){
ring(, ,H3=){
0: bond(r) saveXY(#1) bond(r-)
restoreXY(#1) bond(r+)
restoreXY(#1) bond(r,s,n) atom("$\oplus$");
3: bond(x); }
}

savecontext (#1)

arrow(){}
set ("rLW",1.5)
formula(L,R,"Terpineol" ,HR,24){
ring(, ,H3=){
0: bond(r)
branch{ bond(r-); bond(r+); }
bond(r) atom("0",C,R) atom("H",L);
3: bond(xr); }
}

restore (#1)

% to thujene

setcontext (#1,B) arrow(-90,60){}

formula(T,R){

ring(, ,H3=){

0: bond(r) branch { bond(r-); bond(r+); };
0: bond(r,s) atom("$\oplus$");
3: bond(xr); }

}

arrow(){}
formula(L,R){
ring(, ,H){
0: bond(r) branch { bond(r-); bond(r+); };
3: bond(r);
3: bond(45,s) atom("$\oplus$");
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Scheme 2-22 Nylon synthesis serves as an example for a complex scheme.



Chapter 2 — Tutorial

4: saveXY(#2);
0: bond(#2); }
}

arrow(){}
set ("rLW",1.5)
formula(L,R,"3-Thujen" ,HR,24){
ring(, ,H2=){
0: bond(r) branch { bond(r-); bond(r+); };

3: bond(r);
4: saveXY(#2);
0: bond(#2); }
}
restore (#1)

% to pinene
setcontext (#1,TR) arrow(60,36){}

formula(L,R){
ring(, ,H){
3: bond(r);
3: bond(45,s) atom("$\oplus$");
0: bond(90) branch { bond(30); bond(90,,n);
bond(-150,,n);};
}
}

formula(L,R){
ring("bc311h"){
0: bond(t); 0: bond(b);
1: bond(xr); }
}

arrow() {}
set ("rLW",1.5)
formula(L,R,"$\beta$-Pinen" ,HR,24){
ring(, ,H){
3: bond(r,=C);
0: bond(90) branch { bond(30); bond(90,,n);
bond (-150, ,n) ;};
}
}
restore (#1)

% to camphene
setcontext (#1,T)
arrow(90,60){}

formula(B,R){
ring("bc221h"){
4: bond(r);
3: bond(r,s,n) atom("$\oplus$");
6: bond(t); 6: bond(b); }
}

arrow(){}
set ("rLW",1.5)
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formula(L,R,"camphor",HR,24){
ring("bc221h"){
4: bond(r);
3: bond(r,=C) atom("0");
6: bond(t); 6: bond(b); }
}
restore (#1)

% to carene
setcontext (#1,BR) arrow(-60,36){}

formula(L,R){
ring(, ,H){
3: bond(r);
0: bond(t) saveXY(#1) bond(90; 45,s) atom("$\oplus$")
restoreXY(#1) bond(-90) restoreXY(#1) bond(30);
}
}

arrow(){}
set ("rLW",1.5)
formula(L,R,"3-Caren" ,HR,24){
ring(, ,H2=){
3: bond(r);
0: bond(t) saveXY(#1) bond(90)
restoreXY(#1) bond(-90) restoreXY(#1) bond(30);
}
}

restore (#1)

2.9 More compound classes

Many compound classes have not been discussed in this tutorial. Most of them can
be realized with the means already explained. However, the repeated work with the
same or similar formulae can be simplified a lot if a set of macros is prepared which
is based on those similarities. Some hints for such macros are given in section 3.6.
The following classes of compounds are described in more detail there:

o steroides

e isoprenes

e amino acids and oligopeptides

2.10  Development of ring structures

To avoid overloading the compiler with a lot of seldomly used ring structures, only
basic structures listed under ring have been taken into the core. It is however pos-
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Scheme 2-23 Biosynthesis of bicyclic monoterpenes out of the straight-chain pre-
cursor farnesol.
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<type>_default_ :

<type>_:

sible to define individual ring structures within a perl module. With the help of
require, these can be provided in a document.

To illustrate the construction of such a module, you find the two files mncyclib.pm
and bicyclib.pm. Beside the basic vocabulary they also provide mono- and bi-
cyclic compounds. You can use these files as templates; what must be primarily
supplied in a structure definition is:

the coordinates of each atom in the array @$XYa,

the bond types (single, double, projective ...) in the array @$BT,

a list of atoms which serve as start points for bonds, in the array @$BLa,
a list of angles of the bonds in the array @$rThetaa,

a list of bond lengths in the array @$rLena,

the amount of atoms in a compound in $$iAnz,

the ring size, usually the length of a typical ring edge, in $$rLen,

information wether an aromate ring shall be drawn, in $$bAromat, also its radius in
$$rRadius,

if necessary the settings for the two free parameters.
For each ring structure you must denote two functions:

This function presets the default values offered by the ring to the outside. Among
these, the amount of the atoms and the list with the bond types are most important.
The latter should be able to be overwritten by a possibly following bond list.

This function contains the actual definition of the ring structure. All parameters, in-
cluding the two flexible parameters <p1> and <p2>, are known and can be applied.

The array @$XYa contains the coordinates of the atoms measured in point (pt), which
build up the compound. These can be put in relation to a freely choosable origin
point and can be denoted with either fixed coordinates or — for geometrical com-
pounds — be calculated. It is always recommended to include the length parameter
into the coordinates because structure sizes remain scalable. In basic compounds,
it denotes the length of an edge and thereby determines the overall size.

The list @BLa contains a series of numbers of the atoms from which bonds take
their start. A certain bond is linked with a corresponding atom number in this list.
The link is determined by the sequence in which the members of both lists appear.
The bond is described by data which occurs at the corresponding position in several
properties lists. Monocyclic systems are described by a simple list @$BLa which con-
sists out of figures from zero to the number of atoms minus one. In an analoguous
way, the property lists contains as many items as there are atoms. The list @$BT is
easily built and simply contains the numbers corresponding to the bond types (they
can be looked up in streambuf.pm in the function GetBond). The two other lists
may occasionally create difficulties if the need for calculation of angles and lengths
arises. However, the functions

getangle (<p1l>, <p2>)
getlength(<pl>, <p2>)
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may come handy to find out the angle and length of a bond between the atoms with
the coordinates <p1> and <p2>. The start point of the bond is attached to the atom
<pi>.

getpos (<pl>, <angle>, <len>)

may deliver the destination point of a bond from point <p1>, which possesses a
given direction and length. Wether you know the coordinates of the compound’s
atoms or construct it with the help of given bond angles and lengths, in any way you
attain the missing data by using one of the two function sets.



3.

3.1

Alphabetic command reference
|

User commands

This chapter contains a complete description of all commands and their syntax. Con-
siderations for the free parameters are:

Specifications as bond types or bond lengths are given by symbols, with their ap-
pearances as close as possible to their typeset counterparts.

Angles are measured in degrees (“Altgrade”) in the mathematically positive sense
(counter-clockwise). They are related to the positive x-axis.

Absolut lengths are measured in points (pt) without unit.

Most of the parameters are optional ones, having commonly a default value. This
simplifies the writing of code considerably. After the last parameter with a given
value the closing bracket can be written, a notation of later parameters or commas
is not necessary. Note that in case you want to specify a later parameter’s value, you
have to write all separating commas to define the position of the parameter correctly.
It is sufficient to write only the commas, if you do not want to specify values for these
parameters.

Symbols in the syntax descriptions stand for:

<flist> := atom | bond | branch | orbital | saveXY | ring |
save | restore | set

<slist> := arrow | formula |
savecontext | setcontext | gotoXY | shiftXY |
emove |
save | restore | set | scale
bracket | fbox

This section contains all commands that are allowed to appear in a BTgX document’s
chemistry environment or schema command, respectively.

81
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3.1.1 arrow

arrow([ [<phi>] [, [<len>] [, [<typellll)
{ [ text(T, <Tpos>){ <flist> } ]

[ text(B, <Tpos>){ <flist> } ]
}

[ nospace 1]

<Tpos> :=L | C | R

Defaults: <phi> =0
<len> = rArrowExtend
<type> = 1

This command creates reaction arrows, joining formulae to yield reaction chains.
The arrow’s appearance is determined by the parameters <phi>, <len>and <type>.
The direction of the arrow is measured with an angle <phi> in degrees and in math-
ematically positive sense in regard to the positive x axis.

<type>determines the type of the arrow (balance arrow, “leads to” arrow, strikethrough
arrow) according to the following list:

E— “—) <>
¢— <- 4—F~F— <I-
_’ -> ﬁ%’ -1>

The parameter <len> modifies the length of the arrow and specifies the distance
which must at least be present after the start and before the end of the arrow. An
arrow’s minimum length is therefore 2<1en>. The specification of the length via a
half of the length becomes clear, considering the possibility of labeling the arrow:
the total arrow length is one half of <len> before the text, the length of the text
itself and one half of <1len> after the text.

Text blocks or formulae may appear above or below the arrow. The position is spec-
ified with the positioning parameters T and B in the command text. Due to the
possible appearance of text blocks or formulae, a formula description or reaction
sequence is expected. Simple text blocks are therefore to be set with the command
atom within a formula.

The parameter <Tpos> becomes important, if you typeset formulae or text blocks
above and below the arrow. In this case, you can specify the alignment of both
formulae with the values L, C und R, thereby creating left-aligned, centered or right-
aligned text blocks, as you can see in scheme 3-1.

Scheme 3-2 shows how the arrow’s text blocks are positioned due to different arrow
angles.

As mentioned above, it is possible to use complete reaction schemes instead of sim-
ple text blocks over an arrow, as you can see from scheme 3-3. This figure illustrates
a side reaction, leading to the actual adduct:
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left-aligned centered right-aligned
4

14
short short short

Scheme 3-1 Alignment of two text blocks above and below an arrow.

\begin{chemistry} [arrow2]
formula(L,R)
{ ringO{} }

arrow()
{ text(T,L)
{ formula(T,B){ bond(30; -30)atom("COOH",L) }
arrow(-90)
{ text(T,L) { formula(C,C){ atom("SOC1$_23%") } } }
formula(T,B){ bond(30; -30)atom("COC1",L) }

}
}
formula(L,R)
{ ring()
{ 4: bond(r) branch { bond(r+,=C) atom("0"); }
bond(r-; r); }
}
\end{chemistry}

Usually, a small space is set after an arrow in the direction of the continuation point
to prevent several arrows from sticking too densely together. If this effect is intended,
you may denote the command noindent immediately after arrow to inhibit this
behaviour and set arrows and formulae without additional space.
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< >

top | bottom

bottom

top top

bottom bottom

top | bottom

bottom

Scheme 3-2 Positioning of the text blocks above and below an arrow, due to differ-
ent angles of the arrow.

~"~COOH

SOCl,

~cocl ﬂ
O Jond

Scheme 3-3 Complete reaction chains act like labels if they are set above arrows.
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3.1.2 atom

atom("<Text>" [, [<pos>] [, [<Cpos>111)

<pos> :=C | LI R I TIBI|TL | TR | BL | BR
<Cpos> :=C | L IR I|TIBI|TL| TR | BL | BR

Defaults: <pos> = C
<Cpos> = C

This command inserts arbitrary TgX text at the actual position with an alignment spec-
ified by <pos> relative to the actual position. This actual position may be influenced
by the text’s size due to the continuation directive given in <Cpos>.

The following formulae are examples, showing the different possibilities of text sym-
bols. The simplest case is an element symbol which terminates a bond and is there-
fore center-aligned with C at the bond’s end. With longer texts like COOH is it ad-
visable to right- or left-align the text. In both cases, no continuation from this atom
is required, the parameter <Cpos> is therefore unused. If further bonds branch from
this atom, the parameter gains importance: nicely demonstrated by the methylene
group which is reached from the right (<pos> is R) and from which a bond leads on
to the left (<pos> is L):

formula(L,R){
ring(, ,H){
3: bond(r,=C) atom("0");
O\/O\ 4: bond(r) atom("0") bond(r-; r)
atom("0") bond(r-);
Cl 5: bond(r) atom("Cl");

formula(L,R){
ring(O{

HOOC 0: bond(r) atom("COOH", L);
HOOC bond(r) atom("HOOC", R);
COOH bond(r) atom("HOOC", BR);
bond(r) atom("HOOC", R);
bond(r) atom("COOH", L);
bond(r) atom("COOH", TL);

HOOC COOH
COOH

g W N

}
}

It is easily seen that long text blocks like COOH tend to be placed quite disharmo-
niously. In the tutorial on page 19 some information about such cases is given.
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@/CH2CH2\©

formula(L,R){
ringO{
2: bond(r) atom("CH$_2$CH$_2$", R, L)
bond (-150) ring(,4){};
}
}

Typesetting symbols and texts with TEX means that you are not limited to simple let-
ters. Mathematical formatting, indices, the symbols & and & as well as greek let-
ters can be used. Even user-defined commands can appear as text, in this case it
is necessary to collect the definitions in advance in a package file. The method is
described in section 3.2.2.
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3.1.3 bond

Normal syntax

bond (<phi> [, [<btype>] [, [<len>]11])

bond ([<phi>] [+|-] rltlblllv [+|-] [, [<btype>] [, [<len>]]])
bond (#<n> [, [<btype>] 1)

bond (=<2dexpr> [, [<btype>] 1)

2dexpr := 2dexpr’ + 2dexpr’ | 2dexpr’ - 2dexpr’ | 2dexpr’
2dexpr’ := realnum * 2dexpr | (2dexpr) | #<n> | #cur | {<x>,<y>} |
philen(<phi>, <len>)

bond(<argsl...>; <args2...>; ... )
<btype> := - => K- <-><K,. K3 ts>> pb "~
<len> :=S | NI LIsl|Inl1l1TEL..]

Defaults: <btype> = 0
<len> N

This command creates the basic graphical element of a bond. Different syntax vari-
ations cover all applications.

Bond types

In this syntax, you prescribe the angle <phi> of the bond in relation to the positive
X axis. <btype> describes the shape of the bond and <len> its length. The bond
starts at the actual position which is moved in degree to its own length and direction
to the end point of the bond, thereby becoming the next start point. In this manner,
you can use subsequent bond commands to achieve a continued chain. Several fol-
lowing bond commands can be compressed to a single one wherein each individual
chain segment is separated by a semicolon.

In all syntax variations, the different bond types are chosen by symbols <btype>
according to the following list (all bonds are drawn with an angle of 90°):

1 I i | 1T O A

-t p b s KK K. > > o =€ =U = 3 > <= 7

This type corresponds to the most widely-used usual bond appearance.

Double bonds can be typeset in three ways, which differ from each other in the
position of the individual bonds. The normal form = is used if the = bond should
be arranged right from the o bond in clock-wise view. Within benzene rings, this is
the most aesthetic form, because all 7 bonds lie in the inner of the ring. =U draws
the = bond on the left side of the o bond and is used in rings which are drawn
counter clock-wise, again arranging all = bonds inwards in the ring. =C draws the
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t,p, <<:

>>,>.,b:

two bonds equally spaced and positioned to the virtual center of the bond. They are
not designed for working in ring structures, but for the representation of exocyclic
bonds and bonds leading to terminating atom symbols. The differences between
the formulae are shown in the following figure:

= P formula(L,R){ ring(,,H0=2=4=){} } space(R)
[:::] [:::]| [:::]l formula(L,R){ ring(,,H0=U2=U4=U){} } space(R)
AN AN formula(L,R){ ring(, ,H0=C2=C4=C){} }

This is a triple bond.

Here we have the following types of thick bonds (t); thick bonds with an additional
white border (p) and a bond becoming larger (<<). The types t and << are both
suitable to represent perspective bonds, coming out of the paper plane, as the exam-
ples for the next bond types show. The bond type t is also applicable to symbolize
bridges, lying above the paper plane in complicated polycyclic systems. To increase
illusion, type p draws a white border around the bond. If you regard the following
compound, you can compare both variants. The effect of p is only visible if bonds
cross other bonds:
formula(L,R) {
ring(, ,H){
vertex(,4,1,H){};
vertex(,3,0,H){};
3: bond(180,t,S; -90,t; -30,t; 0,t,S);
}
}
formula(L,R) {
ring(, ,H){
vertex(,4,1,H){};
vertex(,3,0,H){};
3: bond(180,t,S; -90,p; -30,t; 0,t,S);
}
}
When using this hack, you have to consider the sequence of drawing bonds. Bonds
of type p only become effective when drawn at last! To keep the illusion of the
perspective in the example above, you cannot change the sequence of the rings.

This type is a dashed, self-broadening bond or a dashed bond, respectively. They
are used for the perspective representation of bonds lying behind the paper plane:

formula(C,C){
bond (30)
$ branch { bond(120,<<); bond(60,<.); }
,>k;,/’ bond (-30)
*, branch { bond(-120,t); bond(-60,0); }
bond (30)
}

The fine-dashed line o is suitable for bonds in statu nascendi or to illustrate hydrogen
bridge bonds:

formula(){
ring(, ,H0=2=4=U3050){
N | 4: bond(r);
X 5: bond(r);
}
}

These bond types correspond to narrowing, filled-out, narrowing dashed or broad
bonds and are useful for the depiction of bonds of an atom, lying above the paper
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->,<-:

plane with bonds stretching into it. The broadness of the bond of type b (tuned
by the parameter rBW) correlates to the maximum broadness of the broadening or
narrowing bonds so that all three forms can easily be combined. See for example
the three-dimensional delineation following HAYWORTH:

formula(C,C){
0] ring("furanose",0,1<<2b3>>,L){

0: atom("0");
\/_\/ }

}

This type of bond will be used if the stereochemistry of an atom should not further
be specified or if there is a mixture of anomeres, as an example from the saccharide
chemistry shows:

formula(C,C){
0 ring("furanose",,,L){
O’WOH 0: atom("0");
1: bond(0,~) atom("OH",L);
}
}

This is an invisible bond and can be used to reach points near an atom. An example
would be the numbering of an atom compound:

formula(C,C){

4 ring(, ,H){
0: atom("0");
[jﬁt] 0: bond(r,s) atom("1");
2 o) 1: bond(r,s) atom("2");
1 3: bond(r,s) atom("4"); }
}

As you can see from the cyclodecane, invisible bonds can also be used to rub out
lines in a polycyclic system:
formula(C,C){

ring(,4,H4s){}
ring(,2,H1s){}
}

These arrow-like types are used to represent complex bonds. The atom is denoted
which spents the electron pair:

formula(C,C){

C ring(, ,H0<-4->,,5,0) [
u 0: atom("Cu", L); }
}

This bond type indicates a non-saturated bond which still continues. It can be used
to show only parts of a molecule, but still to give a hint of the rest, like for example
in the 3 headpart of the carotene nomenclature:

formula(C,C){

ring(, ,H4=){
3: bond(b);
bond (t) ;
: bond(r);
: bond(r, ,n;r,|);

oW
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Bond lengths

r/t/b/1/v symbolic angles

The length of the bond is coded by the letters S (short), N (normal) and L (long). A
small letter codes a length half as long as that of the corresponding uppercase letter.
Each larger letter signifies a length increased by 50%. If the same letter appears more
than once, then the bond will be prolonged the corresponding amount of length
of this letter. NN exemplifies the double normal length. As a consequence, some
lengths may be represented in several ways: nn is the same as N, NNN relates to LL.
The actual length of each bond is stored in the variables rLenS, rLenN and rLenL
(—set). The special length 0 supplies a bond of the length zero, which may be
useful if you have written a general macro in which one of the bonds should not be
always present.

t,b:

v(<n>) :

This syntax is identical to the normal form in all points except the specification of
the angle. This syntax variant is intended to help constructing side chains on ring
systems and is mostly used in ring or vertex commands. The letters are symbolic
angle specifications with their concrete value depending on the actual ring system
and the ring position the side chain is starting from.

symbolizes a radial bond, meaning a bond with its direction determined by a line
center of ring-ring atom.

Angles for bonds above (top) or below (bottom) the paper plane. Especially useful
with the ring type chair and other conformeres. These bond types are also ap-
plicable in planar formulae to draw bonds prolonging ring vertices. Which angles
are really used for these variant is discussed in schematic form when presenting the
individual ring types (command ring and introduction of the libraries).
formula(L,R){
ring(,,H,,5,90){
0: bond(r);
2: bond(t,t);
2: bond(b,0); }
}

The angle of this bond is determined by the bond from the ring atom labeled <n>
to the next atom in the ring.

Equals to the angle of the last-drawn bond.

These basic angles may be modified by different symbols in the following sequence
(single or in any combination):

This specification transforms the angle of a r, t or b symbol into its complementary
angle. This is the angle leading to the “zick-zack” presentation of linear chains when
combined with its normal angle in a sequence r ¥/ r r/ r. The resulting chain
is oriented at the x and y axis, respectively. The inner angle at the corner is always
60°.
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t:

formula(L,R){

ringO{
1: bond(r; r/; r; r/);
: bond(r; r/; r; r/);
: bond(r; r/; r; r/);
: bond(r; r/; r; r/);
: bond(r; r/; r; r/); }
}

This produces an angle which is the counterpart of the angle /, therefore yielding
a branch. The combination /t supplies a branch to the opposite side of the zick-
zack-chain:

O W N

formula(L,R){
ring O {
1: bond(r) branch{ bond(rt); }

bond(r/) branch{ bond(r/t); }
bond(r);

3: bond(r) branch{ bond(rt); }
bond(r/) branch{ bond(r/t); }
bond(r);

4: bond(r) branch{ bond(rt); }

bond(r/) branch{ bond(x/t); }
bond(xr); }
}

These specifications may be present more than once and increase or decrease the
bond angle by 60° each. This is the normal angle which builds alkane chains in
zick-zack-representation and also the main angle in six-member rings. The effect is
a turn out of the actual direction to the left or to the right. You get changes in the
chain’s directions or isopropyle branching:

formula(L,R){

ringO{
2: bond(r) branch { bond(r+); bond(r-); };
3: bond(r) branch { bond(r+); bond(r-); };
5: bond(r) branch { bond(r+); bond(r-); };
}

}
To symbolize longer, methyl-branched chains, the specification of the angles is bet-
ter done with rt or r/t.

This symbol mirrors a bond at the vertical axis. You can easily get symmetric molecules:
formula(L,R){

ring () {
© 4: bond(r; r+; rl)
ring(,0,,,,r){
3: bond(r);
O
}

It is possible to summarize a given angle <phi> and the angle determined by a com-
bination of the aforementioned symbols. This can be used to e.g. describe a 10°-
turn out of the radial direction. The operator + returns the normal sum of both an-
gles, - returns the sum of the given angle and a symbolic angle running into the
opposite direction.

- can also be used to draw bonds in opposite to a given direction:
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formula(L,R){
ring(){
5: bond(r) atom("N=N",L,R) bond(-rl)
NH2 ring(’o””r){
@\ /©/ 3: bond(r)
N=N atom("N",C,R) atom("H$_2%$",L);
¥
}
}
A more detailed explanation of all these variants as well as numerous examples are
given in the tutorial section 2.2.1. A short conclusion of some important directions,
yielded by combinations of symbolic angles follows here:
r r _—r+
Tl ;f»
T+
A
-z, T -r| —rO —r>/
r\%—r\“?%nﬁ < %
r Y, - T r rl -r/ T
7\
At the beginning of a formula environment, the symbolic angles are associated with
the default angles 30° for r, 90° for t and -90° for b. This makes it possible to use
the symbolic angles out of a ring system, too:
formula(L,R){
r/A\ng\w bond(t; r; r/; r,=; r/; b)
}
To change the default values, use —set:
formula(L,R){
set ("iAngleR",30)
/v\ set ("iAngleT",60)
set ("iAngleB",-60)
bond(t; r; r/; r,=; r/; b)
}
#-syntax

Chained bonds

The syntax variant starting with #<n> supports bonds of which the direction and
length is not specified, but calculated automatically so that the resulting bond con-
nects the actual atom and a position <n>. The latter position was formerly saved
with saveXY. Examples can be found in —saveXY and —restoreXY.

The descriptions of several subsequent bond commands can be compressed into a
single bond command, wherein each individual bond is separated by a semicolon.
All syntax variants can be used as well as combinations of them. As example, the
following sequences are equivalent:

bond (30) bond(0,=,L) bond(-30) bond(30)
== bond(30; 0,=,L; -30; 30)
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bond(r) bond(r/) bond(r)
== bond(r;r/;r)

Complex 2D-terms with the =-form

formula(L,R) {
ring(, ,H,#N,4,-45) {
0: bond(-70; -10; 50) saveXY(#1);
3: bond(70; 10; -50)
bond (=0.5% (#1-#cur)) atom("0") bond(#1);
}
}

To calculate the central point and to shift it to the left at the very same time, we
can use the addition of the central point and a certain amount of movement (by the
length of a normal bond length):

#2
formula(L,R) {
ring(, ,H,#L,8,-22) {
2: saveXY(#1);
5: saveXY(#2) bond(=0.5*(#1-#2)+{N,0}) atom("0") bond(#1);
}
#1 ’

The second position does not need to be explicitly stored because it can be easily
extracted with #cur (this stands for "’current”’):

formula(L,R) {
ring(, ,H,#N,4,-45) {
0: bond(-70; -10; 50) saveXY(#1);
3: bond(70; 10; -50)
bond (=0.5* (#1-#cur)-{N,0} ;#1);
}
}

The complex example illustrates how the porphine compound can be built up. Be-
cause of its symmetry, an undefined origin is chosen and the rings are at the four
points {N,N}, {N,-N}, {-N,-N} and {-N,N} arranged in such a way that the ring
atom 1 with nitrogene is attached at this position. (Please note that the notification
{N,-N} is not allowed, the correct form is {N,0}-{0,N}.) saveXY (#cur,<expr>)
means that the value of <expr> (which is the location of an atom) will be used as
actual position (#cur instead of, for example, #1).

The atoms 2 and 5 of each ring which form later on the bridge heads, are stored in
the positions 1 to 8 to provide for the delineation of the four bridges.
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formula(L,R) {

saveXY (#0)
restoreXY(#0) saveXY(#cur,={N,N})
ring(,0,H2=4=,,5,-135){

0: atom("N");

1: saveXY(#1); 4: saveXY(#2);
}
restoreXY (#0) saveXY(#cur,={N,0}-{0,N})
ring(,0,H2=,,5,135){

0: atom("N") bond(135) atom("H");

1: saveXY(#3); 4: saveXY(i#4);
}
restoreXY (#0) saveXY (#cur,={0,0}-{N,N})
ring(,0,H0=2=,,5,45){

0: atom("N");

1: saveXY(#5); 4: saveXY(#6);
}
restoreXY (#0) saveXY(#cur,={0,N}-{N,0})
ring(,0,H1=3=,,5,-45){

0: atom("N") bond(-45) atom("H");

1: saveXY(#7); 4: saveXY(#8);
}
restoreXY(#8) bond(=0.5*(#1-#8)+{0,n}; #1,=)
restoreXY(#2) bond(=0.5* (#3-#2)+{n,0}; #3,=)
restoreXY(#4) bond(=0.5* (#5-#4)-{0,n},=; #5)
restoreXY(#6) bond(=0.5* (#7-#6)-{n,0},=; #7)
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3.14

bracket

{formula | multiline} bracket() | bracket([) | bracket(])

This command inserts brackets around the last single formula created with formula
or the last partial scheme created withmultiline. When executed after commands
other than the two mentioned above, the results are unpredictable! You can choose
whether you want to get a left bracket, a right bracket or both, in which case you
have to specify an empty parameter list. The brackets are useful to comprise several
individual mesomeric structures or a mixture of intermediates.

Details about bracketing in complex situations can be found in the section 2.3.5 of
the tutorial.
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3.1.5 branch

branch{ <alist_1>;
<alist_2>;

This command allows you to build up branched compounds. Each branch <alist>
starts at the current position. In the following example, three chains branch from
the central carbon atom. The command lets the current point unchanged, so it is
possible to continue from the central point with the third (last) chain, and only two
branches have to be described within branch:

formula(L,R){
atom("C1l") bond(30,,L)
branch { bond(90,,L) atom("H");
bond (-20,<<,L) atom("D");
}
bond(-70,<.,L) atom("Br")
}

formula(L,R){
atom("C1l") bond(30,,L)
branch { bond(90,,L) atom("H");
bond (-20,<<,L) atom("Br");
}
bond (-70,<.,L) atom("D")
}

This command is exceptionally suitable for a structured human mind, because of
its way to work hierarchically-recursively. If you are more of an unconventional
type, you might prefer to save a position (—saveXY) and later return to this posi-
tion (—restoreXY, —bond) to continue with another branch. This transforms hi-
erarchical branches in a linear sequence wherein each branching point has to be
saved.
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3.1.6

cutline

cutline (#<n>, #<m> [, [<extend>] [, <type>1])

This command draws a line with (bond) type <type> from point A, specified by
#<n>, to point B, specified by #<m>. The default bond type is ~. For each point, the
identifier #cur can be used instead of an integer, specifying the current point. At
each end of the drawn line, an extent of size <extend> can be specified as a bond
length expression (default is the normal bond length N). The following formula gives
a short example, showing decaline with a partially cutted ring:

formula(L,R) {
ring(, ,H){
3: bond(r; r-; r--; r-) saveXY(#3);
0: bond(r) saveXY(i#1);
1: bond(r) cutline(#1,#cur,s,o0);
5: bond(r) cutline (#cur,#3);
}
}

The command is used to indicate that parts of the molecule are not shown here.
You can also symbolize parts of i.e. a macromolecular chain with this command.
Details are explained in the tutorial, section 2.7.
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3.1.7

emove

Wm"?&&

emove (#<i>, <ilngle>, <iCtrl>, #<j>, <jAngle>, <jCtrl>)

(Only available in PostScript output format!) The command draws small, straight or
arched arrows to illustrate electron movements. Arrows can start in one formula and
end in the same formula or connect points in two different formulae. An arrow tip
is drawn at the arrow’s end. The command emove itself is only allowed to appear
outside a formula body, similar to formula or arrow.

The start and end points of the arrows are previously saved (saveXY) points, identi-
fied by their numbers <i> and <j> respectively. A distance rEmove is inserted be-
tween arrow and specified point to avoid the circumstance that the arrow directly
sticks to a bond. The arrow is described by a cubic spline, the shape is fine-tuned by
two angles <iAngle> and <jAngle> and two real numbers <iCtrl> and <jCtrl.
The angles describe the angle under which the tail or tip of the arrow leaves or en-
ters a target position. The lines, leaving the target atoms under the given angles, can
be thought of as tangents to the arrow in the given points. In the distances <iCtrl>
and <jCtrl> respectively, lie the two control points necessary for a PostScript spline.
The amount of the start, end and the two control points controls the exact drawing
of the spline at which end a little arrow tip is attached.

To draw a concrete electron transfer, the two angles are most easy to choose, be-
cause they are determined by the desired input and output angles at the target atoms.
Experience (and maybe good luck) however, is required to find values for the control
parameters to achieve an aesthetically arched arrow.

Some examples may show you the influence of the control parameter:

formula(L,R)

{ saveXY(#1,30,n) bond(30,=)
saveXY (#3,-30,n) bond(-30)
saveXY(#2,30,n) bond(30,=)

}

emove (#1,90,1,#2,120,1)
emove (#1,-60,1,#3,-120,1)

emove (#1,90,5,#2,120,5)
emove (#1,-60,5,#3,-120,5)

emove (#1,90,10,#2,120,10)
emove (#1,-60,10,#3,-120,10)

emove (#1,90,20,#2,120,10)
emove (#1,-60,20,#3,-120,20)

Two topics can be seen: a) the control parameters’ influence on the degree the ar-
row is arched grows the greater the distance becomes between them (the control
points lie farer away from the start and end points). All four main points (start point,
end point and the two control points) form a trapezoid, in which the spline curve
is embedded, whereby each control point wants to attract the arc. The fourth ex-
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ample shows an extreme case, the curve is intertwined. b) Most of the target points
of electron movements lie in the center of bonds. The expanded syntax of saveXY
simplifies the formula description to a large extent, because only two commands are
necessary to save the bond’s center point and to draw the bond itself. A symbolic
representation of the half of a bond length is n instead of N for normal bonds. The
tutorial, section 2.6, shows more examples.

3.1.8  fbox
{formula | multiline} fbox
The command draws a frame around the last formula, created with formula, or the
last block of formulae, created with multiline. You can get further information
about frames around complex formulae in the tutorial, section 2.3.5.

3.1.9 formula

formula(<pos>, <Cpos>, ["<Text>", HA|HRIV, <dy>])
{ <flist> }
[ nospace 1]

<pos> :=C | L|RI|TI|BI|TL | TR | BL | BR
<Cpos> :=C | L IR I|TIBI|TL| TR | BL | BR

L
R

Defaults: <pos>
<Cpos>

This is the central command of the package. It builds formulae out of basic struc-
tural elements, which are subsequently transformed into an enclosed unit. This unit
is then positioned automatically in relation to other formulae, which builds whole
reaction schemes with the element —arrow. Some more advanced commands like
—multiline or —joinh require formulae as base.

The formula itself, sitting in the command’s body as <f1ist>, is described by a se-
quence of basic elements (—atom, —»bond, —ring, —branch). This unit is posi-
tioned in such a way that it has the relation <pos> to the start point. The connection
point for all following formulae is determined by the parameter <Cpos>. The mean-
ing of all parameters is shown in the tutorial in more detail.

Usually, a space is left after a formula in the direction of the connection point to
prevent the formulae following directly each other. If you intend your formulae to
behave exactly this way, insert nospace immediately after formula.
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3.1.10

gotoXY

-

imidazole

J

X
H

pyrrole

I-I\N
-
I
H
imidazoline

L/

N
H

pyrroline

gotoXY([<x>] [, [<y>]11)

Defaults: current x- and y-values

This command sets the current point to the specified absolute position. This seems
to be in contrast to wishes for automatic positioning of formulae and elements in a
reaction scheme and in fact, it is! But it may make sense, if you want some formulae
to appear at certain places, independent of the randomness of scheme sizes. Think
about table-like arrangements:

\begin{chemistry}[gotoxy1l]
gotoXY(0,0)
formula(C,C,"pyrrole" ,HA,36){
ring ("cpentane",,1=3=){
0: atom("N") bond(r) atom("H"); }
}
gotoXY(50,0)
formula(C,C,"pyrroline" ,HA,36){
ring ("cpentane",,1=){
0: atom("N") bond(r) atom("H"); }
}
gotoXY(0,100)
formula(C,C,"imidazole" ,HA,36){
ring("cpentane",,1=3=){
0: atom("N") bond(r) atom("H");
2: atom("N"); }
}
gotoXY(50,100)
formula(C,C,"imidazoline" ,HA,36){
ring("cpentane",,3=){
0: atom("N") bond(r) atom("H");
2: atom("N") bond(r) atom("H"); }
}
\end{chemistry}

A relative arrangement can be achieved by command —shiftXy.
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3.1.11

joinh

joinh(<n>, <pos>)
{ <rlist_1>;

<rlist_n>;
}

<pos> :=L | C| R

This command joins <n> horizontal reaction chains. The individual chains are po-
sitioned in such a way that they run one above the other in an equal distance. The
parameter <pos> controls the alignment of all lines: left-, centered or right-aligned.
If labels for formulae occur, they will be set with a constant distance from the cen-
ter line. The vertical minimum distance corresponds to the value of the parameter
rTextSep. Due to this automatic text positioning feature, named formulae are not
allowed to have distance parameters! Unnamed formulae do not influence the dis-
tance of text to the center axis.

The connection point for subsequent reaction arrows lies on the right side in the
middle of the formula block. The following example shows a convergent synthesis,
joining two separate chains to a single one. Typically, joinh is followed by an arrow
command, because joinh does not draw arrow tips (if several joinh commands
would be nested, superfluous arrow tips would occur otherwise). All part chains
begin left-aligned due to the given parameter L:

\begin{chemistry}
joinh(2,L){
% upper line
formula(L,R,"propionic acid"){
bond (30;-30;30) atom("C",C,R) atom("OOH",L) }
arrow(,12){}
formula(L,R){ bond(30;-30;30) atom("C",C,R) atom("OC1l",L) }
% lower line
formula(L,R,"benzene"){ ring(){} }
}
arrow(,12){}
formula(L,R,"propionylbenzene" ,HR,24){
ring(){ 4: bond(r) branch{ bond(rt,=) atom("0"); }
bond(r/;r);
}
\end{chemistry}

~_COOH —p ~_COCl —

propionic acid

@ propionylbenzene

benzene
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3.1.12  joinv
joinv(<n>, <pos>)
{ <rliste_1>;
<rliste_n>;
}
<pos> :=T | C | B
Similarto — joinh, thiscommand joins <n> individual vertically oriented chains into
a single one. The individual chains start at the top and are collected at the bottom;
the continuation point lies in the middle of the lower border of the resulting block.
Usually, you continue with an arrow tip here. All chain’s top borders are aligned
according to the parameter <pos>: top-aligned, centered or bottom-aligned. The
—joinh example is shown vertically oriented (top-aligned due to the T positioning):
_~_LCOOH joinv(2,T)
{ % left line

propionic acid

formula(T,B,"propionic acid",V,24)
{ bond(30;-30;30) atom("C",C,R) atom("OOH",L) }

l benzene arrow(-90,12){}

_~_Locl

propionylchloride

formula(T,B,"propionylchloride",V,24)
{ bond(30;-30;30) atom("C",C,R) atom("OC1",L) }

)

% right line
formula(T,B, "benzene",V,24)

propionylbenzene

{ ringO{} }

}
arrow (-90){}

formula(T,B,"propionylbenzene",V,24)
{ ring ()
{ 4: bond(r) branch{ bond(rt,=) atom("0"); }
bond(r/;r); }
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3.1.13  multiline

multiline(<n> [, [<iPos>] [, [<pos>] [, [<cPos>]111] )
{ <rliste_1>;

<rliste_n>;

}

<iPos> := L | C | R
<pos> :=C | L | R | TI|BI|TL | TR | BL | BR
<Cpos> :=C | L IR I|TIBI|TL| TR | BL | BR

Defaults: <iPos> = L
<pos> =1L
<cPos> = R

This command typesets <n> lines with formulae or reaction schemes one below
the other, keeping a constant distance between all neighboured lines. The first line
<rlist_1>istypesetatthe top of the stack. Alllines are aligned according to <iPos>
(left-aligned, centered or right-aligned). The block of <n> lines is completely posi-
tioned in relation to the current point according to <pos>. The connection point for
subsequent formulae is determined by <cPos> (like the positioning of formula).
Texts below formulae are typeset bottom-aligned in an individual line, keeping a
fixed minimum distance from the highest formula in the line. Due to this automa-
tism, no distance parameters are allowed for formulae with text!

In the easiest case, the command is used to split long reaction schemes into several
lines, or to typeset several short chains in a stack:

\begin{chemistry}
multiline(3,L)
{ formula(L,R){ bond(30; -30,=;30) }

e "Vd —} Y arrow() {}

Q—0

formula(L,R){ bond(30; -30;30) }

%ormula(L,R){ ring(O{} }
arrow () {}
formula(L,R){ ring(, ,H0=2=){} }

formula(L,R){ bond(0; 0,3; 0) }
arrow() {}

— b — formula(L,R){ bond(30;0,=;-30) }

)

}
\end{chemistry}

The special case <n> is equal to 1 can be used to collect several formulae into a single
unit, which can be placed or framed or serve as branching point. See section 2.3.5
in the tutorial.
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3.1.14  orbital

orbital ([<iAngle>] [, [<rWeight>]])

Default:
<rWeight> = 1

(Currently only available in the PostScript output format!) The command allows you
to draw p-orbitals, e. g. to illustrate some quantum mechanical influences of a cyclo
addition. The parameter <iAngle> is the angle between the axis of the orbital and
the positive x axis, <rWeight> is a scaling factor, specifying the size of the orbital.
The upper and the lower half of the orbital are identified by different gray shades.
Some examples:

formula(L,R)

{ orbital(90,2) bond(30)
orbital(-90,1) bond(-30)
orbital(90,0.5) bond(30)
orbital(-90,1) bond(-30)
orbital(90,2)

=
i

/i
i
»

e

multiline (1)
{ formula(L,R)
{ orbital(90,1) bond(135,=)
orbital(-90,1) bond(45)
orbital(-90,1) bond(0,=) orbital(90,1)
}
shiftXY(12,0)
— formula(L,R)
( / 4’ O { orbital(90,1) bond(45,=C) orbital(90,1) }
it
arrow() {}
formula(L,R)
{ ring(, ,H1=)
{ 1: orbital(-110,1);
2: orbital(-110,1); }

3.1.15 restore

restore (#<n>)

This command restores a parameter set, previously stored under the integer number
<n> (—save).
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3.1.16  restoreXY

A

dimethyl-cyclopentane

Bicyclo[2.2.2]octane

restoreXY (#<n>)

The command restores a point which was previously stored with —saveXY, labeled
<n> and then sets the current point to it. So you achieve branches in structures
without the need of recursive thinking, as —branch requires. We call this “wild
branches” :-) Examples:

formula(C,C,"dimethyl-cyclopentane" ,HA,36){
saveXY (#1) bond(170; -160; -10,t; 60,t,L)
saveXY(#2) bond(#1)
restoreXY(#2) bond(30) restoreXY(#2) bond(150)
}

formula(C,C,"Bicyclo[2.2.2] octane" ,HA,36){
bond(30,t,L) saveXY(#1) bond(-30,t,L; 60; 150,,L)
saveXY (#2) bond(-150,,L; -120)
restoreXY(#1) bond(90,t,L; 60) bond(#2)

}

The examples of the branch command can be written with saveXY and restoreXY
as follows:

\begin{chemistry}
formula(L,R)
{ atom("C1l") bond(30,,L)
saveXY (#1)
bond (90, ,L) atom("H")
restoreXY(#1) bond(-20,<<,L) atom("D")
restoreXY(#1) bond(-70,<.,L) atom("Br")
}

formula(L,R)
{ atom("C1l") bond(30,,L)
saveXY (#1)
bond (90, ,L) atom("H")
restoreXY(#1) bond(-20,<<,L) atom("Br")
restoreXY(#1) bond(-70,<.,L) atom("D")
}
\end{chemistry}

It should be mentioned that bicyclo[2.2.2]octane is contained as a basic compound
inthe library module bicyclib. pm. Different conformers of cyclopentane are found
in the module mncyclib.pm.
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3.1.17  ring

Fixed parameters

ring([ <typ> [, [<start>] [, [<bliste>]
[, [[#1<len>] [, [<p1>] [, [<p2>11111101)
{ [ <aliste_1>;
<aliste_2>;
L]

% nur bei <typ> = "ring", "cpentane", "chair":
[ vertex([<typ2>], [<kante_1>] [, [<kante_2>]
[, [<bliste_1>] [, [kp1>] 1111)
{ [<aliste_11>;
<aliste_12>;

]
}
.

}
<start> := 0..<n-1>
<bliste> := [H|0] [ Ol1]...[|<b><btype> <bliste>]
<aliste_i> := C|O|1]...|<n-1> : <fliste>
Defaults: <typ> = "ring"

<start> =0

<bliste> = 0

<len> =N

<p1> =6

<p2> = -90

This command produces pre-fabricated ring structures. The extended syntax with
vertex is only available in conjunction with the ring types mentioned above.

The parameter typ specifies which basic compound is to be drawn according to the
following code:

AN ¢

ring  cpentane chair newman

The list above contains all structures defined in the compiler core; with the aid of
—require, you can build up libraries of externally defined ring structures, which
are loadable when needed. Some possibilities to produce five-membered rings in
stereographical representation like chair are shown in section 2.4 of the tutorial
(steroids) and in the command reference under —restoreXy.

The position of bonds with the direction types r, t and b of the command bond are
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shown in the following formulae. t bonds are symbolized with thick lines, b bonds
with dashed lines.

1

\

X

radial top/bottom radial top/bottom  radial  top/bottom
radial, p=1 top/bottom, p=1

radial, p=0 top/bottom, p=0
radial, p=-1 top/bottom, p=-1

Some of the parameters have a fixed meaning, the meaning of others depends on
the ring type. Fixed parameters are <start> and <bliste>. The first, which can
vary between Zero and the number of atoms in the structure minus one, specifies
the relation of the structure to the current point. This means, it determines which
atom of the ring structure lies at the current point. In the case the ring is the first
element of a formula, the parameter does not make sense because the ring becomes
the basic element of the formula. But if bonds are already drawn, you specify the
target atom of the last bond. The labeling of the structures is as follows:

PN

T T NA, Y

~o~ \0/ 5 3 2 1

The basic rule for simple n-membered rings and most of the other basic structures is:
the labels increase clock-wise, the atom labeled with Zero lies on the positive x axis
or is clock-wise rotated by a type-specific angle (-90° for type ring). The labeling
order of some basic structures may differ from this scheme.

Note in the following examples that ring does not move the current point. You can
use this to draw all three rings without needs for substituting one ring with another,
as shown in the last formula (nevertheless, it is recommended to use vertex for the
rings B and C due to several reasons):
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$ a8

O

d O

formula(C,C){
bond (150; -150) ring(,4){}
}

formula(C,C){
bond(-150; -90) ring(,3){}
}

formula(C,C){
bond (30,=C) ring("cpentane",1){}
}

formula(C,C){
ring(,4,H){}
ring(,2,H){}
ring(,0,H){}
atom("N")

}

The labeling serves as indication which substituent starts at which ring atom, too
(labels in <alist>).

With the bond list <blist>, you can vary the bond types used while building the
structure. It consists of a sequence of pairs of bond number (or label) and bond type.
The bond label starts with 0 and ranges to the number of bonds in the structure,
decremented by one. The correspondence of bond labels to individual bonds is
shown in the following diagram:

) 03w

04 \$/

The specification for the bond type is the same the command bond uses. The draw-
ing of a circle, indicating aromaticity, is not automatically inhibited by bond type
specifications, you have to specify explicitly whether this aromaticity ring should be
present or not. For this purpose, the additional types H (meaning saturated systems
without circle) and 0 (aromatic systems with circle) are available. These two spec-
ifications have to appear at the beginning of the bond listt Some examples may
illustrate the use of bond lists:

formula(C,C){
ring(, ,H){}
}

formula(C,C){
ring(, ,H0=2=4=){}
}

formula(C,C){
ring("cpentane",,0=){}
}
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formula(C,C){
ring(, ,H1=4s){}
}

The parameter <len> codes the size of the ring. The default N is the radius of the
building circle for polygons and the length of the main bond for all other systems. All
or at least the highest possible number of bonds are of this length, if geometrically
possible.

Due to the fact that the radius is the base length of polygons, the length of the real
bonds between the atoms varies as function of the number of vertices (bonds of tri-
angles are significantly longer than bonds of nine-membered rings). To seta constant
bond length you have to specify the size with #, see below.

An explicit specification of the ring size is appropriate especially in conjunction with
complex systems, e. g. cyclohexane:

formula(C,C){
ring("chair",,,S){}
}

formula(C,C){
ring("chair",, ,N){}
}

formula(C,C){
ring("chair",,,L){}
}

formula(C,C){
ring("chair",, ,NN){}
}

The variant with # before the bond length specification is allowed only for the struc-
ture type ring and means that <len> does not specify the radius of the circle, but
the length of the real bonds themselves. Polygons with different numbers of atoms
then have equal bond lengths. This must be considered if you condense two differ-
ent rings as shown:

formula(C,C){
ring(,5){}
ring(,2,,,5,00{}
}

formula(C,C){
ring(,5,,#0){}
ring(,2,,#N,5,0)0{}
}

Usually, the bonds of the six-membered ring are shorter by a small amount than
those of a five-membered ring. This becomes clearly visible when condensing both
rings (more extreme when using three-membered rings). Therefore, each of the par-
ticipating rings’ sizes have to be specified with #N.
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Variable parameters

ring :

cpentane :

chair :

newman :

The parameters <p1> and <p2> have different meanings depending on the basic
structure type:

For this structure, they code the number of vertices (or atoms) of the ring (default is
6 for benzene) and an angle in degree, by which the ring is rotated. The reference is
the positive x axis, the rotation is done clock-wise. Due to the default of -90° for the
angle, the benzene ring stands upright on the atom labeled 0. The most important
alicyclic basic compounds can be typeset as follows:

0 formula(C,C){
ring(,,H,,3,90){ 0: atom("0"); }
}
formula(C,C){
E(L ring(,,H,,4,-45){ 0: atom("0"); }
}
formula(C,C){
{ \ ring(,,H,,5,-90){ 0: atom("0"); }
0 }
formula(C,C){
O ring(,,H,,6,-90){ 0: atom("0"); }
0 }
0 formula(C,C){
O ring(,,H,,7,90){ 0: atom("0"); }
}

Some important angles are given for the most basic polygonal structures in the fol-
lowing formulae. They code the angle of a line parallel to a polygon side in the
indicated direction. If the polygons are rotated, the rotation angle has to be added
to the angles given here.

126° 90° g0 120° 60° 120° 60° 1037 £10
540 180°7—\60° 120° ° 1549

00 -162 1620 180° 0° 0°
180 -54° -120 0° 180M—/-60° -154°

-90° - -126° -120° -60° -60° -120° -10307°1°

Parameter <p1> has no meaning, <p2> is the angle by which the whole compound
is rotated.

<p2> is the angle by which the structure is rotated. <p1> codes with values 1, 0 und
—1 the two chair- and the twist conformation of cyclohexane:

XA <> A
p=1 p=0 p=-1

This structure corresponds to an axial view on a single bond (representation in the
NEWMAN projection). Bonds starting from the nearer atom have fixed angles of 90°,
210° und 330°. The bonds of the farer atom are rotated by an additional angle p1:
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formula(L,R,"syn",HA,36){
ring ("newman",,,L,-20){
0: atom("Br");
3: atom("Br");

r r }
}
Br formula(L,R, "anti",HA,36){
syn anti ring("newman", ,,L,180){
0: atom("Br");
3: atom("Br");
}
}

Substitution

The individual <aliste_i> components in the command’s body specify the sub-
stitution at the i.th ring atom. The labeling of the ring atoms has been shown ear-
lier (see parameter <start>). Substituents can consist of single bonds, further ring
structures or combinations of all formula elements. Some examples:

formula(L,R){
OH ring(){
1: bond(r) atom("H$_2$N",R);

N::N\\I:::j 4: bond(r) atom("N=N",L,R) bond(r-) ring(,2){};
3: bond(r) atom("OH",L);
H>N }
}

formula(L,R){
ring ("cpentane",,2=4=){
- 0: atom("N");
’N\hr/ 1: atom("N") bond(r) atom("H");
}
}

formula(L,R){
ring(,,H,,5,0){
2: bond(r,<<) atom("Br");
3: bond(r,<.) atom("Br");
}
B[, r ¥
: :&> formula(L,R){
/[:::> bond (150)
Br Br ring ("newman",3){
0: atom("Br");
1: bond(30,t);
4: atom("Br");
}
}
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The vertex command

O

triphenylene

Q0

RGN

Ring structures supporting rotation of the structure offer an extended syntax with
vertex commands. These commands condense further structures to the current
structure. <vertex_1>and <vertex_2> code the concerned edges of the basic ring
(the current ring) and the second ring in the form of numbers. These numbers are
identical to those used for bond list specification, see above. <blist_1>isthe bond
list for the new structure. <p1> codes the size of the new structure.

The body of the vertex command is identical to the body of ring, meaning that
substitution is possible, using the labeling scheme of the incoming structure. Con-
densation of further structures with more vertex commands is also possible. Some
examples may show you proper usage.

formula(L,R,"triphenylene" ,HR,24){
ringO{
vertex(,0){};
vertex(,2){};
vertex(,4){};
}
}

formula(L,R){
ring(,,H,,5,90){
vertex(,1,3,H0=,5){
0: bond(r);
};
vertex(,3,1,H0=,6){};
}
}

formula(L,R){
ring("cpentane",,,L){
vertex ("cpentane",3,1,H3=){
3: bond(r);
vertex(,4,0,H){};
};
}
}

formula(L,R){
ring("cpentane",,,,,0){
vertex("cpentane",2,2,H0=){
3: bond(b);
vertex(,4,0,H,5){};
};
}
}
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Symbolic rotation angles

OO
O O

tetraphenylarsol

The ring structures ring and cpentane support the symbolic angles r, t and b for
the rotation angle <p2> instead of integer numbers. Similar to the related specifi-
cations of the bond command, these symbols code the angles of the radial and tan-
gential bonds. The ring’s rotation is calculated so that the last bond drawn, leading
to the specified start atom, possesses the specified relation to the ring:

formula(L,R,"tetraphenylarsol" ,HR,24){
ring(,,H1=3=,,5,90){
0: atom("As");
: bond(xr) ring(,,,,,r){};
bond(r) ring(,,,,,r){};
bond(r) ring(,,,,,r){};
bond(r) ring(,,,,,r){}; }

S wWw N =

More examples of symbolic angles can be found in the tutorial.
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3.1.18 save
save (#<n>)
This command saves the graphical parameter used for typesetting formulae under
the number <n>. You use this command if you want to locally change a parameter’s
value and you want to reset it to the original value (—restore). Examples of this
are given in the tutorial, section 2.5.

3.1.19  savecontext

savecontext (#<n>)

This command saves the context of the last drawn formula under a number <n>. You
can later reinstall this context (—setcontext)for building up branches in a reaction
chain or to reuse a formula’s context several times.
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3.1.20 saveXY

Simple syntax

Desoxy-Tropin

O N

Nor-Pinan

saveXY (#<n>)
saveXY (#<n>, <iAngle>, <Len>)
saveXY (#<n>, =<2dexpr>)

2dexpr := 2dexpr’ + 2dexpr’ | 2dexpr’ - 2dexpr’ | 2dexpr’
2dexpr’ := realnum * 2dexpr | (2dexpr) | #<n> | #cur | {<x>,<y>} |
philen(<phi>, <len>)

This command saves in the syntax variant above the current coordinates under a
number <n>. The extended syntax below saves the coordinates of a point, shifted
by the length <Len> into the direction of the angle <iAngle> from the current point.
Both parameters are identical to those of the bond command. The current point
is not shifted. Corresponding to the bond command, there is the opportunity to
denote with the = syntax a complex formula in order to calculate a storable position
(for an example, see the command bond on page 93).

You use a saved point to draw later with bond (#<n>) a bond from other atoms to it
regardless of the exact bond length and angle. In this way, you can easily build up
complex and irregular polycyclic compounds, typical for natural compounds. tropi-
nee and Nor-Pinane are available in the library bicyclib.pm. Here a demonstra-
tion is given how you can implement a structure not yet available in the library:

formula(C,C,"Desoxy-tropine" ,HA,36){
ring("chair",,,L){
0: atom("N") bond(150) atom("H");
1: bond(-100) saveXY(#1);
5: bond(-100,t; #1,t);
}
}

formula(L,R,"Nor-Pinan" ,HA,36){
ring(, ,H){
2: saveXY(#1);
0: bond(90; #1);
}
}
space(R)
formula(L,R){
ring("chair",,,L,-1){
2: saveXY(#1);
4: bond(-60,t; #1);
}
}
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formula(L,R,"7,8,9-Trinor-thujane" ,HR,24){
ring(, ,H){
3: bond(r);
4: saveXY(i#1);
0: bond(#1);
}
}
space (R)
formula(L,R,"thujane" ,HR,24){
ring(, ,HOt1t,,5,0){
7,8,9-Trinor-thujan 4: bond(90);
Thujan 1: saveXY(#1);
0: bond(90; #1,p; -60)
branch { bond(30); bond(-90); };

formula(C,C,"Nor-Caran'" ,HA,36){
ring(, ,H){
1: saveXY(#1);
0: bond(-150; #1);

Nor-Caran }

formula(C,C,"(-)-(1S,5R)-Frontalin" ,HA,36){
ring("chair",,,L){

0) 3: bond(t);
3: bond(b,t) atom("0") saveXY(#1);
4: atom("0");
. 5: bond(t);
(-)-(1S,5R)-Frontalin 5: bond(b,t: #1,t); }

In a planar representation, the pinane and carane structure behave like regular six-
membered rings, so you can describe them simply as follows:

\begin{chemistry}
formula(L,R,"Nor-Pinan",HA,36)
{ ring(,,H){ 0: bond(90; 150); } }

formula(L,R,"Nor-Caran",HA,36)
{ ring(,,H){ 0: bond(-150; 90); } }
\end{chemistry}

In conjunction with —restoreXY, this syntax greatly expands the possibilities of
typesetting irregular natural compounds; see the description of restoreXY. Note
that the scope of the saved points is not limited to the formula, so that a later ref-
erence to an already saved position points erroneously to the wrong formula! You
can exploit this behaviour to illustrate the electron transfer between two different
formulae, as shown in section 22.
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Extended syntax

This syntax variant is especially useful for the illustration of electron movements, ex-
amples can be found at —emove and in the tutorial, section 2.6. Another applica-
tion is to mark points nearby the formula’s main line to typeset labels or symbols.
Examples would be charge symbols beside an alkane chain:

formula(L,R){
bond (-30) saveXY(#1,-90,n)
o bond (30; -30,=; 30)
\/\j) bond (90) saveXY(#2,45,N)
X atom("0")
&b restoreXY(#1) atom("$\oplus$")

restoreXY (#2) atom("$\ominus$")



118 Chapter 3 — Alphabetic command reference
3.1.21  scale
scale (<p>)
The command scales all internal graphical parameter by a factor <p>. <p> is a frac-
tion; to scale a formula to 70%, write
scale(0.7)
Fractions greater than 1 result in a magnification, fractions less than 1 in a smaller
drawing.
You use the command habitually within a —save/restore pair to recover easily the
original values. As an example, a helper reaction will be shown above a reaction
arrow:
\begin{chemistry}[scale]
formula(L,R)
{ ringO{} }
arrow()
{ text(T,L)
{ save(#1)
PO
COOH scale(0.8)
formula(T,B){ bond(30; -30)atom("COOH",L) }
S0Cl, arrow(-90)
{ text(T,L) { formula(C,C){ atom("SOC1$_2$") } } }
formula(T,B){ bond(30; -30)atom("COC1",L) }
~NCOCI restore (#1)
O ‘ }
4
}
formula(L,R)
{ ring()

{ 4: bond(xr) branch { bond(r+,=C) atom("0"); }
bond(r-; r); }
}
\end{chemistry}
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3.1.22 set

set (<cPar>, <iVal>)

With this command, you can adapt one of the parameters in table 3.1 which deter-
mine the layout of the formula, and set it to the value <iVal>. Its values influence
partly the settings like the distance of a formula from another, partly the appearance
like line width and arrow thickness. Changes of parameters of the latter kind will be
written into the output file.

Changes made with this command are permanent, so it may be necessary to adapt
them locally. For this, the parameter set is stored under a certain number right be-
fore the section of the program in which they will be changed. After the end of the
section they will be reactivated with the help of this number (commands —save
and —restore):

save (#1)

set ("rLW", 2) % increase line width
formula.. .
restore (#1) % restore old values

% normal line width

A delineation of an application is found in the tutorial, section 2.5.

Table 3.1 Internal parameters which can be changed with set.

Parameter Meaning

rLW Width of all lines in bonds, circles, arrows and others.
rBW Maximum width of projective bonds.

rAW Width of the arrow tip of reaction arrows.

rBD Dash pattern for projective bonds.

XS Horizontal distance of formulae and arrows.

XY Vertical distance of formulae and arrows.

rArrowExtend  Additional distance a reaction arrow stands out on both sides
in relation to a label.

rArrowSkip Distance of the arrow label from the arrow itself.

rChainSep Distance of the reaction chains joined together by the com-
mands joinh and joinv.

rMultilineSep Distance of the reaction chains stacked on top of each other
by the command multiline.

fboxsep Distance of the frame/bracket from the formula.

rTextSep Vertical distance of the formula label from the bottom edge
of the lowest formula.

iAngleR Angle for radial bonds, symbol r.

iAngleT Angle for “top” bonds, symbol t.

iAngleB Angle for “bottom” bonds, symbol b.
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3.1.23

setcontext

setcontext (#<n>, <pos>)
[nospacel]

<pos> :=C | L IR | TI|BI|TL | TR | BL | BR

This command sets the already under a number <n> stored context as the current
context and calculates a continuation point out of the context’s bounding box and
the positioning parameter <pos>. An important application for the command is the
construction of branches in reaction chains: in scheme 3-4 a reaction scheme is
noted, starting from azlactone, in the “usual” sequence (L,R) — (L,R) — (L,TR). In or-
der to achieve a second branch from the azlactone, its context must be stored (com-
mand —savecontext) after the typesetting of the lactone formula. This context
must be reactivated after the end of the first chain. The second chain should run
down to the right, therefore BR as positioning parameter will be denoted:

\begin{chemistry}[cont1]
multiline (1){
formula(L,R, "hippuric acid"){
ring(, ,H3s4=C,,5){
0: bond(r) ring(,3){};
1: atom("N") bond(r) atom("H");
3: atom("COOH",L,C);
4: atom("0"); }
}
arrow () {text(T,L) { formula(C,C){ atom("- H$_2$0") } } }
formula(L,R, "Azlacton"){
ring(, ,HO0=,,5){
0: bond(r) ring(,3){};

1: atom("N");
3: bond(r,=C) atom("0");
4: atom("0"); }
}
savecontext (#1) ;
}
setcontext (#1,R)

arrow(){ text(T,L) { formula(C,C){ atom("R-CHO") } } }
formula(L,TR){
ring("cpentane",,0=){
0: bond(r) ring(,3){};
1: atom("N");
2: bond(r,=U) bond(-150) atom("R");
3: bond(r,=C) atom("0");
4: atom("0");
}
}

savecontext (#2)

arrow(45){ text(T,L){ formula(C,C){ atom("3 H$_2$0") } }}
formula(L,R,"$\alpha$-Aminoacid", HR, 24){
atom("H$_2$",C,R) atom("N",L,C) bond(90)
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branch
{ bond(150; -150) atom("R");
bond (30) atom("COOH",L,R);
}
}

setcontext (#2,BR)
arrow (-45){
text(T,L){ formula(C,C){ atom("1. H$_2%$") } }
text(B,L){ formula(C,C){ atom("2. H$_2%$0") } }
}
formula(L,R,"2-0xoacid", HR, 24){
atom("0") bond(90,=C)
branch
{ bond(150; -150) atom("R");
bond (30) atom("COOH",L,R);
}
}
\end{chemistry}

You can construct different branches by saving a number of contexts and applying
several setcontext commands. Furthermore, by this method several chains can
branch from one formula, which is explained in detail in the tutorial, section 2.3.4.

R/Yc00H

H,oN
3 H,0 2

a-Aminoacid

|

hippuric acid Azlacton

R/TCOOH

2-Oxoacid

Scheme 3-4 Several reaction chains branch from one formula. The context of this formula must be stored.
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3.1.24

shiftXY

3.1.25

space

shiftXY([<dx>] [, [<dy>11)

0
0

Default: <dx>
<dy>

This command shifts the current point by <dx> on the x axis and by <dy> on the y
axis outside a formula. If a value is missing, no shift takes place at the corresponding
axis.

The main usage of the command is to place several educts not in a regular kind of
“string”, but in a “cloud”. In the opposite to —gotoXY, no fixed points are given
but relative distances. Shifts of the overall reference point affect all educts equally.
It may be useful (but it is not obligatory) to use the placement parameter C,C. An
example is given in section 2.6. There, three educts are to be placed so that you can
illustrate the electron movements between them. The collection of all “wild” dis-
tributed educts to one unit proves successful once again with asingle-linemultiline
command.

space (<pos>)

<pos> :=C | LI|IRI|TI|BI|TL| TR | BL | BR

This command inserts additional space into the direction specified by <pos>. In
choosing a direction contrary to the main one, you get a “backspace”, which means
that space is eliminated. (After an arrow or formula command, this elimination of
additional space is possible with the postfix command nospace.)
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3.2

Special commands

This section introduces commands which must not at all appear within a chemistry
environment in BTEX documents. Some of them are part of the actual source files
which are produced during a BTEX run or which may be coded by you manually.
According to the following scheme, BTEX commands correspond to them so that it
is not necessary to use the basic commands:

\begin{chemistry}{...}¢>schema("...")
\end{chemistry?} +rendschema
\chemfontname +font

However, there are some special commands which are required during the initial-
ization of OCHEM, but not within each single chemistry environment. Those may
be included in the chemspecial environment. This environment passes the en-
closed text without changes to the actual source file and is usually placed at the
beginning of the document. Among the commands which can be usefully applied
in a BKTEX document require and package should be mentioned.

If you look over the . chm file produced by a BIgX run, you can see how your docu-
ment has been processed into the source file.



124

Chapter 3 — Alphabetic command reference

3.21 font
font ("<name>")
This command contains the BTEX commands which adjust the font for the chemical
text symbols of the atom command. This form of the command only serves for in-
ternal purposes, because the command \chemfont has been provided for the BTEX
user (see page 8 for details).

3.2.2  package

package ("<Paket>")
package (" [<Optionen>]<Paket>")

This command loads the required package with possible options during the BTEX
processing of the formulae’ labels. It may appear more than once, but must always
appear before the first formula.

The calculation of the size taken by a text, i. e. an atom symbol, is transmitted to the
BTEX compiler. The compiler starts with a temporary file which contains all texts used
in the reaction schemes. If macros are used in these texts, they must be available for
the BTEX processing of the temporary file. OCHEM therefore applies the following
method: all macros which are in use within text positions in formulae must be col-
lected in one or more separate packages, i.e. biochem.sty. The names of these
packages are loaded with the package command by the temporary file and become
then available. Package options can also be communicated:

\begin{chemspecial}

package ("biochem")

package (" [biochem] chemmacros")
\end{chemspecial}

An illustration for this would be the letter “P” in a circle which is often used in bio-
chemistry for activated phosphate. You can produce the symbol with the help of a
BTEX macro. The macro definition is written in a file called biochem. sty:

% biochem.sty

\newcommand{\Phosphat}
{{\setlength{unitlength}{1pt}
\begin{picture}(20,20)
\put (10,10) {\makebox (0,0) {P}\circle{20}}
\end{picture}
1

The macro is then used in formulae as follows:
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—(P)—(P)—o0

3.23

Xylose-4-diphosphate

require

\usepackage{biochem}

\begin{chemspecial}
package ("biochem")
\end{chemspecial}

H \begin{chemistry}
formula(C,C,"Xylose-4-diphosphate" ,HR,24)
{ ring("furanose",,,L)
{ 0: atom("0");
1: bond(90) atom("0",C,R) atom("H",L);

2: bond(-90) atom("0",C,R) atom("H",L);
3: bond(90) atom("0",C,R) atom("H",L);
4: bond(90;180) atom("0") bond(180)
atom("\Phosphat",R,L) bond(180)
atom("\Phosphat",R,L) bond(180)
atom("H",R);
}
}
\end{chemistry}

The example demonstrates how the package which contains your own macros must
be included into the BTEX document. This must arrange the text in the final position-
ing calculated by the chemistry compiler. The macro definitions must therefore be
accessible for BTX as well as OCHEM.

require (<File>)

This command loads the perl module <File>.pm. It must appear before the first
schema command, and can be used multiple times. Its primary purpose is not to
load “real” perl modules (which would be also possible), but to make available self-
defined ring structures, implemented in perl code. In this way, you can keep a vari-
ety of rarely needed structures available without introducing them directly into the
compiler core and without overloading it. It is also possible to develop structures
without automatically producing a new version of the compiler. The compiler is
kept compatible and can be replaced all the time by newer versions without loos-
ing your self-defined extensions. Furthermore, the module with your definitions can
be forwarded to others without a compiler replacement.

The development of structures is depicted in the tutorial, section 2.10. Some struc-
tures are already defined in the library bicyclib.pm, for example, which is included
in the OCHEM distribution. If the module should be loaded to create the structure
of tropinee (section 3.4), then you have to code:

\begin{chemspecial}
require("bicyclib")
\end{chemspecial}

\begin{chemistry}
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formula(C,C)
{ ring("tropine",,,L)
{...}
}
\end{chemistry}

3.2.4 schema

schema ("<name")
<sliste>
endschema

This command encloses a complete formula or reaction scheme. <slist> is com-
piled as a unit and saved in the selected output format under the file name <name>.
This environmental command contains the logic basic units of the chemistry pack-
age and corresponds to the chemistry environment in BTEX.
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3.3  The library mncyclib.pm

cb:

cp:

This section explains the ring structures contained in the library file mncyclib. pm.
You load this library into the preamble of a BTEX document as follows

\begin{chemspecial}
require("mncyclib")
\end{chemspecial}

The explanations follow the schema already used in the —ring section. There you
will find further explanations.

The library contains the following monocyclic structures and their coding <type>:

N A

cb cp furanose

With the basic structures of this library, you can draw monocyclic compounds in a
pseudo three-dimensional manner. The numbering scheme is shown in the follow-
ing formulae:

2\4 2<3i7ﬁ4 A\ji?/l

The bonds are numbered according to the following formulae:

The meaning of the variable parameters <p1> and <p2> is as follows:

(cyclobutane) parameter <p1> is unused, <p2> is the rotation angle of the complete
structure.

The positions of bonds with the direction types r, t and b are shown in the following
formulae. t-bonds are symbolized by thick lines, b-bonds by dashed lines.

radial  top/bottom

(cyclopentane) again, parameter <p2> is the rotation angle of the complete struc-
ture. <p1> allows for the selection of different conformeres:
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furanose :

Abode A

pl=0 pl=0 pl=0 pl=0

The positions of bonds with the direction types r, t and b are shown in the following
formulae. t-bonds are symbolized by thick lines, b-bonds by dashed lines.

radial top/bottom radial top/bottom

radial top/bottom radial top/bottom

(furanose structure) The parameter here remain unused.

The arrangement of bonds with the direction types r, t and b is delineated by the
following schemes. t bonds are drawn by thick lines, b bonds by dashed lines:

radial top/bottom
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3.4  The library bicyclib.pm

This section explains the ring structures contained in the library file bicyclib.pm.
You load this library into the preamble of a BTEX document as follows

\begin{chemspecial}
require("bicyclib")
\end{chemspecial}

The explanations follows the schema already used in the —ring section. There you
will find further explanations.

The library contains the following bicyclic structures and their coding <type>:

Ao L5

bc221h bc311h bc2220 bc3210

The type code is an abbreviation for bicyclo[n.m.olheptane and bicyclo[n.m.oloctane.
You get the structures of tropinee, norpinane and norbornane with these types.

The numbering scheme is shown in the following formulae:
0 2 0 2
~ / e
st 3 Q) j 3
N 57 3
The bonds are numbered according to the following schemes:
NN 7/’{ NI
Jz\ 6 /23\ 4/23\
A 3, / 1, r
A2 A3 N

The positions of bonds with the direction types r, t and b are shown in the following
formulae. t bonds are symbolized by thick lines, b bonds by dashed lines.
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A

radial top/bottom

Ay

radial top/bottom radial top/bottom

top/bottom

The meaning of the variable parameters <p1> and <p2> is the following:

bc221h :  (norbornane) Both parameters are unused. (According to the new IUPAC rules, this
structure has to be named 8,9,10-trinorbornane.)

bc311h:  (norpinane) Both parameters are unused.

bc321o: (tropinee) Both parameters are unused.

As examples, some bicyclic natural compounds are built with the library’s structures.

formula(C,C,"Cineol" ,HA,48){
ring("bc2220",,,L){
2: bond(t); 2: bond(b);
o) 3: atom("0");
4: bond(r);
}
Cineol }

formula(C,C,"camphor" ,HA,48){
ring("bc221h" , L) {

_0 3: bond(r,=C) atom("0");
4: bond(r);
6: bond(t); 6: bond(b);
}
Campher }
H OOCH; formula(C,C,"cocaine" ,HA,48){
N ring("bc3210",,,L){

2: bond(t) atom("C",C,R) atom("OOCH$_3$",L);
3: bond(b) atom("0",C,R) atom("COC$_6$H$_5%$",L);
COCg¢Hs 0: atom("N") bond(r) atom("H");
}
Kokain }
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3.5  The library polycyclib.pm

tetrahedrane :

This section explains the polycyclic ring structures provided by the library module
polycyclib.pm. Itis loaded into the preamble of a BTEX document by the subse-
quent lines:

\begin{chemspecial}
require("polycyclib")
\end{chemspecial}

The descriptions follow the scheme which has been applied to the command —ring.
More detailed explanations can be found there.

The library contains the following polycyclic structures and their coding <type>:

L3

tetrahedrane cubane

Structures like tetrahedrane and cubane can be depicted.

The numbering of atoms is illustrated by the following formulae:

& e

The bonds are numbered according to the schemes given:

The arrangement of bonds with the direction types r, t and b is displayed by the
following formulae. t bonds are indicated by thick lines, b bonds by dashed lines.

radial  top/bottom radial top/bottom

The significance of the two variable parameters <p1> and <p2> is:

The parameter <p1> is unused, while <p2> represents the rotation angle of the whole
structure.
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cubane :

The parameter <p1> is insignificant, whereas <p2> determines the rotation angle for
the whole structure.

For the case in point the formula of the 2-tert-Butylecubylecubane is stated as an
example of usage:

formula(L,R){

ring("cubane",,,L){

1: bond(r,,L)
ring("cubane",7,,L,,0){

0: bond(r) atom("(H$_3$C)$_3$C",R);
};

}
}

For a more complex case, the synthesis of cubane is presented in scheme 3-5:

multiline(3,L)
{ % upper line
formula(L,R,"cyclopenten-5-one"){
ring(, ,H3=,,5,-90){
0: bond(r,=C) atom("0");

}
}
arrow(){
text(T,C){ formula(C,C){ atom("1. NBS, 2. Br$_2%$") }}
text(B,C){ formula(C,C){ atom("3. N(C$_2$H$_5$)$_3%") 1}}
}
space(R)

formula(L,R){
ring(,,H1=3=,,5,-90){
0: bond(r,=C) atom("0");
4: bond(r) atom("Br",L);
}
}
bracket ()
space (R)
arrow() {}
formula(L,R){
ring("bc221h",,0=,L){
6: bond(r,=C) atom("0");
4: bond(r) atom("Br",L);
3: bond(-30;-90,=) branch { bond(-45) atom("Br",L); } bond(-170)
saveXY(#1) bond(-120,=) atom("0");
2: bond(#1);
}
}

)

% middle line
arrow(){
text (T,C){ formula(C,C){ atom("h$\nu$") }}
}
formula(L,R){
ring("cubane",,1-2-3s5s6-7-9-10-11-,NN) {
3: saveXY(#1); 0: bond(150) branch { bond(135,=C) atom("0"); } bond(#1);
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3: bond(r) atom("Br", R);
5: saveXY(#2); 1: bond(-60) branch { bond(0,=C) atom("0"); } bond(#2);
5: bond(r) atom("Br", L);
}
}
arrow(,5)q{
text(T,C){ formula(C,C){ atom("1. KOH/H$_2$0") }}
text (B,C){ formula(C,C){ atom("2. H$_3%0$"\oplus$") }}
}
formula(L,R){
ring("cubane",,1-2-3-6-7-9-10-11-,NN) {
3: bond(r) atom("HOOC", R);
5: bond(r) atom("COOH", L);
}
}

)

% lower line
arrow(,5)q{
text (T,C){ formula(C,C){ atom("1. SOC1$_2$") }}
text(B,C){ formula(C,C){ atom("2. HO-C(CH$_3$)$_3$%, 3. $\Delta$") }}
}
formula(L,R,"cubane"){
ring("cubane",, ,NN){}
}

}

@ 1. NBS, 2. Br, @\ Br
) g Bri ———p

g 3. N(CoHs)s S

cyclopenten-5-one

0\
hw 1. KOH/H20 HOOC
) Br >:o
Br
1. SOCl,
>
2. HO-C(CH3)s, 3. A
cubane

Scheme 3-5 The synthesis of cubane.
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3.6 The include file natur.inc

TERPEN

The OCHEM package is shipped with a small include file natur. inc, containing a
few, but growing number of macros, which simplify the work with some substance
classes, especially natural compounds. It is incorporated as follows into your BIEX
document:

\begin{chemspecial}
include(‘natur.inc’)
\end{chemspecial}

You might find the macros not really useful in their present form; but it is difficult to
generalize macros without using about 50 parameters for all possible and impossible
cases. You are expected to see these macros as a fund from which you derive basic
structures and modify them according to your needs. As usual, | am happy to hear
from you in such cases and get a copy of such a better-written include file :-)

The macros are now described in detail. They all draw basic structures for certain
classes of substances. Important key positions are saved, so you can reuse them
with restoreXY. The coordinate pair’s numbers are given for each macro. Some
macros expect parameters, which also modify the basic structure, e.g. androstane
or cholane for the steroid macro to accomplish the androstane and cholane struc-
ture. Further modifications can be made with bond lists, describing basic ring ele-
ments in the structure. At last, complete descriptions of side chains can be employed
as arguments. The examples show all these posibilities.

Please note that these macros are not totally general, you will always find structures
that you cannot typeset with them. In these cases, you can copy the macros and
modify it or, in really difficult cases, describe the complete resistant structure without
any macro!

This macro creates a menthane structure, which serves as basis for some monocyclic
monoterpenes. The general syntax is

TERPEN_(<blist>, <C2-Subs>)

<blist> is the bond list for the ring, <C2-Subs> is the description of a substituent
at C2. If there is no such substituent, you can specify an empty description with
7. The positions of C', C® and C? are saved in the coordinate pairs 1 to 3. The
following formula shows the basic structure and the position of the saved atoms:



3.6 — The include file natur.inc 135

1-p-Menthen

OH

Nerol

Carvenon

STEROID

(P
P
TERPEN_

Some examples show the handling of the bond list, the substituent’s description and
the saved points:

formula(L,R,"1-p-Menthen" ,HR,24){
TERPEN_ (H3=) restoreXY(#1) bond(90)
}

formula(L,R,"Nerol",HR,24){
TERPEN_ (H3=5s)
restoreXY(#1) bond(90)
restoreXY (#3) bond(-30) atom("0",C,R) atom("H",L)
restoreXY (#2) bond(90,=)

formula(L,R,"Carvenon",HR,24){
TERPEN_ (H5=,bond (30) atom("0"))
restoreXY(#1) bond(90)

}

This macro has the general syntax
STEROID_(<blist>, <type>)

and generates steroid structures according to <type>. The possible types corre-
spond to the most important basic hydrocarbons and are shown in the following
overview. The numbers at some atom positions match the number of the saved co-
ordinate pairs:
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OH
O“'
HO

" Ostradiol

Testosteron

CHO

A T

STEROID_ estrane androstane cholane
cholestane ergostane

<blist>isabond list, describing ring A. You can use it to specify aromaticity or dou-
ble bonds for this ring. Further modifications can be done by using the subsequent
coordinates, represented in the overview below by numbers:

number atom number atom

1 & 2 clo
3 c® 4 cd
5 (ﬂ4 6 C17
7 Cll

X W you r ur :
Some examples may show you the macro’s 0se

formula(L,R,"{}""Ostradiol" ,HR,24){
STEROID_(0)
restoreXY(#2) bond(90,<<)
restoreXY(#1) bond(-150) atom("0",C,L) atom("H",R)
restoreXY (#6) bond(30) atom("0",C,R) atom("H",L)

formula(L,R,"Testosteron",HR,24){
STEROID_(H5=, androstane)
restoreXY(#1) bond(-150,=C) atom("0")
restoreXY(#6) bond(30) atom("C",C,R) atom("HO",L)
}
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formula(L,R,"Cortison",HR,24){
O OH STEROID_(H5=, androstane)
restoreXY(#1) bond(-150,=C) atom("0")
restoreXY(#7) bond(150,=C) atom("0")
restoreXY (#6) bond(30) branch{ bond(90,=C) atom("0"); }
O bond(-30; 30) atom("OH",L)
restoreXY(#6) bond(90) atom("0",C,L) atom("H",R)
Cortison }

ISOPREN

This macro draws an isoprene unit in two different forms, allowing the construction
of polyprene chains. The general syntax is

ISOPREN_(<bond_len>)
ISOPREN1_(<bond_len>, <bond_type>)

<bond_len> is the length of a bond, leading to the start point of the unit. For an
isolated unit, you must specify a length of ¢0’. For subsequent units in polyprene
chains, this parameter may remain empty with ¢’. With <bond_type>, you spec-
ify the bond type for one of the double bonds (usage at the terminal ¢-unit of the
Caroten). The following formulae show the basic unit with <bond_len> equal to
zero:

formula(L,R,"I{}SOPREN\_",HR,24){

\)\ Y\ ISOPREN_(0)
X }

formula(L,R,"I{}SOPREN1\_",HR,24){
ISOPREN_ ISOPREN1. ISOPREN1_(0)
¥

Some examples show the construction of carotene chains:

formula(T,B,"$\beta, \beta$-Caroten",HR,24){
ring(, ,H4=){
3: bond(t); 3: bond(b);

5: bond(r);
4: ISOPREN_
NSV VN Ve Ve VS ISOPREN_ bond(r; r/,=; r)
ISOPREN1_
ISOPREN1_ ring(,0,HO0=,,,r){
1: bond(r);

B, B-Caroten 5: bond(t); 5: bond(b);
};
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formula(T,B,"$\beta, \psi$-Caroten" ,HR,24){
ring(, ,H4=){
3: bond(t); 3: bond(b);
5: bond(r);
AV AV E VAV S VO VS VS Y N 4: TSOPREN_
ISOPREN_ bond(r; r/,=; r)
ISOPREN1_
ISOPREN1_
3, -Caroten ISOPREN1_(, ‘-’)
bond(r/,=) branch { bond(r/t); } bond(r);

AA

This macro simplifies the representation of amino acids in a text-like mode without
considering the three-dimensional structure. The general syntax

AA_(<KN-terminus>, <C-terminus>, <side chain>)

offers two parameters, describing the N- and C-terminus respectively. The argu-
ments H or OH generate the terminal sequences HoN- and -COOH. These positions
may remain empty and allow therefore the construction of oligopeptides. You can
also specify any formula elements to depict abnormally terminated amino acids.
The third parameter describes the amino acid’s side chain.

<N-terminus>N H—?H—CO<C-terminus>

<side chain>

AA_

The following examples show the usage of the macro. For convenience, the include
file utils. inc, described in section 3.7, is utilized.

The basic form of an amino acid is generated by the termini H und OH:
formula(L,R,"Glycin",HR,24){

AA_(H,0H,atom("H"))
}

HQN—QH—COOH
H

Glycin

In a simple dipeptide, neither is the first amino acid allowed to have a C-terminus,
nor the second a N-terminus:

HoN—CH—CO—NH—CH—COOH formula(L,R,"H-Gly-Val-OH" HR,24){
H Ho AA_(H, ,atom("H"))
bond (0)
AA_(,O0H,branch{atom("C",C,R) atom("H$_2$",L);} iPr_(-90))

H-Gly-Val-OH }

To depict an abnormal saturation of the terminal atoms, you can also specify totally
different formula elements:
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formula(L,R,"Ph-Gly-Val-0iPr" ,HR,24){

@N H—?H—CO—N H—CH—CO—OCH,CH; AA_(ring(,0,,,,0){} bond(0),,atom("H"))
H bond (0)

Ho
AA_(,bond(0) OEt_,
branch{atom("C",C,R) atom("H$_2$",L);}

. iPr_(-90))
Ph-Gly-Val-OiPr }
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3.7 Theinclude file utils.inc

Another include file is utils. inc which contains very small macros. They are in-
tended to support the coding of recursively used structures. They are added to a

KTEX doument as follows:

\begin{chemspecial}
include(‘utils.inc’)
\end{chemspecial}

The file contains the following macros:

H_ % creates H

N_ % creates N

0_ % creates 0

S_ % creates S

Cl_ % creates Cl

Me_ % creates -CH3

eM_ % dto H3C-

Et_ % creates -CH2CH3
tE_ % dto H3CH2C-
iPr_(<dir>) % dto -CH(CH3)2
OH_ % creates -0H

HO_ % dto HO-

ONa_ % creates -ONa
NaO_ % dto NaD-

Om_ % creates -0$"\ominus$
m0_ % dto $"\ominus$0-
OR_(<R>) % creates -0<R>
RO_(<R>) % dto <R>D-

NH2_ % creates -NH2
H2N_ % dto H2N-

NH2p_ % erzeugt -N(+)H2
pH2N_ % dto H2N(+)-
NMe2_ % creates -N(CH3)2
Me2N_ % dto (H3C)2N-
NMe2p_ % creates -N(+) (CH3)2
pMe2N_ % dto (H3C)2N(+)-
OMe_ % dto -0CH3

MeO_ % dto H3CO-

OEt_ % dto -0CH2CH3
EtO_ % dto H3CH2CO-
CH20H_ % dto -CH20H
HOCH2_ % dto H2HOC-

NO2_ % creates -N02
02N_ % dto 02N-

CHO_ % dto -CHO

0HC_ % dto OHC-
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HOOC

HO

OCHs;

COOH

CO0H_
HOOC_
CO0Na_
NaOOC_
C00m_
m00C_
CO0OMe_
Me00C_
COOEt_
Et00C_

SO3H_
HO3S_
S03m_
m03S_

Ph_{...}

%

Ph_(<angle>){...} %

dto
dto
dto
dto
dto
dto
dto
dto
dto
dto

dto
dto
dto
dto

-C0O0H

HOOC-

-C00Na

Na0OC-
-C00$~\ominus$
$~\ominus$00C-
-CO0CH3
H3C00C-
-COOCH2CH3
H3CH2C00C-

-S03H
HO3S-
-S03(-)
(-)03s-

phenyl
phenyl

The body of Ph_ matches the body of a normal ring command and may contain
the same legal operations or remain empty. iPr_ creates a branching isopropyle
rest whose direction must be determined by the argument. It consists of an angle.

Some examples illustrate the possible applications. The macro which generates the
phenyl ring possesses an optional parameter for denoting the rotation angle of the
ring. It is employed as the basic element of the structure for the depiction of ben-
zene. The rotation angle in the examples is —90°. The default angle r for this pa-

rameter leads to the delineation of phenyl substituents:

formula(L,R) {
Ph_(-90)

{ 0: iPr_(r);

1: bond(r) HOOC_;

4: bond(r) iPr_(rt) bond(xr/) COOH_; }

formula(L,R) {
Ph_(-90)

{ 1: bond(r) HO_;

4: bond(r) Ph_{};

2: bond(r) Ph_{ 5: bond(r) OMe_; };

}
}
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3.8 Include files for KEKULE structures: condensed.inc and cyclohexanes.inc

These include files have been graciously provided by Dr. Kenvard Vaughan. They
can be found in the subdirectory kv. The files are enclosed in the same way as
all other include files are and contain macros which significantly simplify the set-
ting of structure formulae according to KekULE. Corresponding to the two include
files, there are the two comprehensive documentations condensed_doc.ps and
cyclohexanes_doc.ps. Some examples from the documentation:

\begin{chemspecial}
define(‘bndlen_’, ‘N’)
include(‘condensed.inc’)
include(‘cyclohexanes.inc’)
\end{chemspecial}

\begin{chemistry}
formula(L,R){_h(0) hk_(_h) co_ hk_(_h, bond(1,,L) vk_(_h) _h) hk_(_h) _h}
space(R) space(R)
formula(L,R){_ch3(,0) ch2_ ch_(,90, _ch2ch3(-), -45) _ch2ch3 }
space(R) space(R)
formula(L,R){_cho(-,-30) _kPh(_cho,_br,_och3,,_cooch2ch3(-)) }

\end{chemistry}

H i? H H HO
H_¢_ - _¢_H CH3 Hg OHC\ Z \,Br

T o »:

H—C—H CHyCH;  CH,3CH,00C ¢~ 0CH,
H H

\begin{chemistry}

defaulz

formula(L,R){ chex_(C)
c1_(_h,_h) c2_(_h,_h) c3_(_h,_h)
c4_(_h,_h) c5_(_h,_h) c6_(_h,_h)
}
space(R) space(R) space(R) space(R)
formula(L,R){ chex_(C)
cl_(_o) c2_(,_oh) c3_(,_br)
c4_(o_(xr) _ch3)

}
\end{chemistry}
H H ~ CHs
L/ i
e
H—_ /l\ /[ F~c—,
ﬁ —C— —=Br
H



A . The program
|

A.1  History
20-OCT-1999 : (chemie.pl version 1.0a 1999-10-20, be.pm)
Setting of \unitlength enclosed in a group.
09-JAN-2000 : (ochem.sty version 3-Ob 2000-01-09, streambuf . pm)
Additional bond types >>, >. and b.
17-JAN-2000 : (mncyclib.pmversion 1.1)
furanose ring type for carbohydrate chemistry.
19-JAN-2000 : (ochem. sty version 3-Oc 2000-01-19, streambuf . pm, chemie.pl)
Additional bond type ~. The length of a bond can now be marked by a variety of
markers N,n,L,1,S and s, representing additive terms. Command package allows to
pass packages to the intermediate BIEX file, supporting macros in text position of
atom.
19-APR-2000 :  Some undesired spaces are eliminated thanks to S. Seckinge, Freiburg (ochem. sty
version 3-0d 2000-04-19, be. pm).
10-APR-2001 :  Creation of EPS, JPG and PNG supplied. Minor changes in the perl code.
25-MAY-2001 :  Extended syntax for 2D expressions in bond and saveXY.
17-SEP-2001 :  Installation script created.
19-SEP-2001 :  Compound catalog created.
03-OCT-2001 :  English manual finished.

A.2 A lot of thanks goes to ...

my wonderful wife Claudia for her patience with which she has translated the ger-
man manual. Not only has she translated it, but only brought into a readable and
useful form.

Some users (like Dr. Kenward Vaughan and Oliver Birschaper) have given me im-
portant suggestions (missing bond types, furanose rings, the possibility to apply macros
in atom commands) and bug reports.

Special thanks again to Dr. Kenward Vaughan for his dedication to the development
of those macros for the depiction of formulae according to Kekule which are in-
cluded in the subdirectory kv.
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B. More stuff for chemistry addicts
|

Who intends to typeset formulae must be aware of also naming them, a fact, which
can become really complicated. Fortunately, on the web pages of the company
ACDLABS, an online version of the I[UPAC rules can be found:

http://www.acdlabs.com/iupac/nomenclature/

For an agreeable introduction into the precise nomenclature of organic compounds
the textbook of D. Hellwinkel, Die systematische Nomenklatur organischer Verbindun-
gen, Springer-Verlag Heidelberg, is recommended (in german language).

There is a WYSIWYG product competing with the presented BIgX package. It is the
chemical drawing program “ChemSketch” by the above mentioned company. It is
available as freeware version for DOSes (i. e. Windows computers):

http://www.acdlabs.com/download

It can however not only draw formulae (even very attractive ones), but also han-
dle different calculations and construct three-dimensional rod- or sphere models.
Furthermore, it possesses a considerable catalogue of substances, features ...
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Carminsure, 10
Caroten, 137
catalogue, 14
chain
reaction, 36
chemistry (environment), 4
Chlorin, 26
Cineol, 130
cocaine, 130
commands
atom, 85
bond, 87
bracket, 95
branch, 96
cutline, 97
emove, 98
fbox, 99
font, 124
formula, 99
gotoXY, 100
joinh, 101
joiny, 102
multiline, 103
nospace, 83, 99
orbital, 104
package, 124
require, 125
restore, 104
restoreXY, 105
ring, 106
save, 114
savecontext, 114
saveXY, 115
scale, 118
schema, 126
set, 119
setcontext, 120
shiftXxy, 122
space, 122
comment line, 7
configuration
electronic, 66
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of compiler, 6
connection bond, 92
context, 43, 120
super-, 46
crassanine, 31
cubane, 132
synthesis, 132
cutline, 97
cyclobutane, 127
spheric representation, 127
cyclohexane, 106
spherical representation, 106
cyclopentane, 63, 127
spheric representation, 127
spherical representation, 63, 127

D

distance, 122

E

electrons
configuration, 66
shift, 67

emove, 98

environment
chemistry, 4

EPS format, 9

examples, 14

F

fbox, 99
Five-membered rings, 60
font, 124
formula, 99

as a unit, 44
furanose, 60

G

gotoXY, 100
Graphics formats (EPS, JPG, PNG), 9
guajane, 27

H

Hayworth representation, 60, 89
Hirsutan, 27
Humulen, 29

Indigo, 10
Internet

Publication in the, 9
Isoprene, 137

J

joinh, 101
joinv, 102
JPG format, 9

K

Kauran, 34
Kekule representation, 142

library
bicyclib.pm, 129
development of, 77
load, 8
mncyclib.pm, 127
polycyclib.pm, 131
lycopodine, 33

M

macro, 13
condition, 13
isoprene, 137
steroides, 135
Terpene, 134

macros
AA, 138

mncyclib.pm, 127

monocyclic compounds, 127

morphinee, 35

multiline, 103

N

natural compounds, 105, 115, 129, 131
New rings, 125

Norbornan, 130

norpinane, 130

nospace, 83, 99

O

ochem.cfg, 6
orbital, 104

P

package, 124
phenyl substituent, 113
Phosphate
active, 124
pinane, 130
PNG format, 9
polycyclib.pm, 131
polycyclic compounds, 105, 115, 131
Porphin, 26
preprocessor, 13
Publication
in the Internet (WWW), 9
purple, 10
pyranose, 62
Pyranosen, 61
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R

r+, 23
r-, 23
t/, 24, 25
r/t, 25
reaction
stack, 103
reaction chain, 36
branched, 43
representation
Kekule, 142
spheric
cyclobutane, 127
cyclopentane, 127
spherical
cyclopentane, 63
require, 8, 125
restore, 104
restoreXY, 105
ring, 106
rings, 59
five-membered, 60
irregular, 105, 115
user-defined, 77, 125
rt, 25

S

save, 114
savecontext, 114
saveXYy, 115
scale, 118
schema, 126
sequence

of reactions, 36

branched, 43

set, 119
setcontext, 120
shift

of electrons, 67
shiftXy, 122
space, 122

spherical representation, 105, 127

cyclohexane, 106
splitting

of reaction sequences, 43

steroides, 63, 135
structural formula

Kekule representation, 142

structures

user-defined, 77
substituent

phenyl, 113
sugar, 59
super context, 46
symbolic angles, 22, 90
synthesis

cubane, 132

T

Terpene, 134
tetrahedrane, 131
thujane, 115
tropine, 130
tropinee, 130
Tutorial, 17

U

user-defined rings, 125

V.

valerane, 63

W.

Web format, 9
WWW
Publication in the, 9



